cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A141498 a(n) = A010696(n-1) * A086892(n).

Original entry on oeis.org

2, 6, 2, 30, 2, 42, 2, 30, 2, 66, 46, 2730, 2, 6, 2, 510, 2, 798, 2, 1650, 2, 138, 94, 2730, 2, 6, 2, 870, 2, 14322, 2, 510, 46, 6, 142, 140100870, 2, 6, 2, 67650, 2, 12642, 862, 690, 2, 282, 2, 4501770, 2, 66, 2, 1590, 2, 798, 46, 870, 2, 354, 2, 283933650, 2, 6, 2, 510, 2
Offset: 1

Views

Author

Paul Curtz, Aug 10 2008

Keywords

Crossrefs

Programs

Extensions

Offset modified, extended by R. J. Mathar, Sep 03 2009

A010702 Period 2: repeat (3,4).

Original entry on oeis.org

3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3
Offset: 0

Views

Author

Keywords

Comments

Continued fraction expansion of A176102. - R. J. Mathar, Mar 08 2012
Also decimal expansion of 34/99. - Nicolas Bělohoubek, Nov 12 2021

Crossrefs

Cf. A047355 (partial sums), A176102.

Programs

Formula

G.f.: (3+4*x)/(1-x^2). - Jaume Oliver Lafont, Mar 20 2009
a(n) = floor((n+1)*7/2) - floor((n)*7/2). - Hailey R. Olafson, Jul 23 2014
a(n) = 3 + (n mod 2) = 4 - ((n+1) mod 2). - Wesley Ivan Hurt, Jul 24 2014
From Nicolas Bělohoubek, Nov 12 2021: (Start)
a(n) = 12/a(n-1). See also A010696.
a(n) = 7 - a(n-1). See also A010695. (End)
a(n) = (7-(-1)^n)/2. - Aaron J Grech, Jul 28 2024

A047463 Numbers that are congruent to {2, 4} mod 8.

Original entry on oeis.org

2, 4, 10, 12, 18, 20, 26, 28, 34, 36, 42, 44, 50, 52, 58, 60, 66, 68, 74, 76, 82, 84, 90, 92, 98, 100, 106, 108, 114, 116, 122, 124, 130, 132, 138, 140, 146, 148, 154, 156, 162, 164, 170, 172, 178, 180, 186, 188, 194, 196, 202, 204, 210, 212, 218, 220, 226, 228, 234
Offset: 1

Views

Author

Keywords

Comments

First differences in A010696.

Crossrefs

Union of A017089 and A017113.
Cf. A014848.

Programs

  • Magma
    [ n: n in [2..234 by 2] | n mod 8 in [2,4] ];  // Bruno Berselli, May 11 2011
  • Mathematica
    Select[Range[250], MemberQ[{2, 4}, Mod[#, 8]] &] (* Amiram Eldar, Dec 18 2021 *)

Formula

a(n) = 8*n - a(n-1) - 10, with a(1)=2. - Vincenzo Librandi, Aug 06 2010
From Bruno Berselli, May 11 2011: (Start)
G.f.: 2*x*(1+x+2*x^2)/((1+x)*(1-x)^2).
a(n) = 4*n-(-1)^n-3.
Sum_{i=1..n} a(i) = 2*A014848(n).
a(n) = 2*A042963(n-1). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/16 + log(2)/8. - Amiram Eldar, Dec 18 2021

Extensions

More terms from Vincenzo Librandi, Aug 06 2010

A174114 Even central polygonal numbers (A193868) divided by 2.

Original entry on oeis.org

1, 2, 8, 11, 23, 28, 46, 53, 77, 86, 116, 127, 163, 176, 218, 233, 281, 298, 352, 371, 431, 452, 518, 541, 613, 638, 716, 743, 827, 856, 946, 977, 1073, 1106, 1208, 1243, 1351, 1388, 1502, 1541, 1661, 1702, 1828, 1871, 2003, 2048, 2186, 2233, 2377, 2426, 2576
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 08 2010

Keywords

Comments

Central terms of A170950, seen as a triangle of rows with an odd number of terms.
Equivalently, numbers of the form m*(4*m+3)+1, where m = 0, -1, 1, -2, 2, -3, 3, ... . - Bruno Berselli, Jan 05 2016
Conjecure: the sequence terms are the exponents in the expansion of Sum_{n >= 1} q^n * (Product_{k >= 2*n} 1 - q^k) = q + q^2 + q^8 + q^11 + q^23 + q^28 + .... Cf. A266883. - Peter Bala, May 10 2025

Crossrefs

Cf. A033951: numbers of the form m*(4*m+3)+1 for nonnegative m.

Programs

  • Mathematica
    Select[Table[(n (n + 1)/2 + 1)/2, {n, 600}], IntegerQ] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2012 *)
    (Select[PolygonalNumber@ Range@ 100, OddQ] + 1 )/2 (* Version 10.4, or *)
    Rest@ CoefficientList[Series[-x (1 + x + 4 x^2 + x^3 + x^4)/((1 + x)^2 (x - 1)^3), {x, 0, 50}], x] (* Michael De Vlieger, Jun 30 2016 *)
  • PARI
    a(n)=(2*n-1)*(2*n-1-(-1)^n)\4+1 \\ Charles R Greathouse IV, Jun 11 2015

Formula

a(n+3) - a(n+2) - a(n+1) + a(n) = A010696(n+1).
a(n) = A170950(A002061(n)).
a(n) = A193868(n)/2. - Omar E. Pol, Aug 16 2011
G.f.: -x*(1+x+4*x^2+x^3+x^4) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Aug 18 2011
E.g.f.: ((2 + x + 2*x^2)*cosh(x) + (1 - x + 2*x^2)*sinh(x) - 2)/2. - Stefano Spezia, Nov 16 2024
Sum_{n>=1} 1/a(n) = 4*Pi*sinh(sqrt(7)*Pi/4)/(sqrt(7)*(sqrt(2) + 2*cosh(sqrt(7)*Pi/4))). - Amiram Eldar, May 12 2025

Extensions

New name from Omar E. Pol, Aug 16 2011

A040008 Continued fraction for sqrt(12).

Original entry on oeis.org

3, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6
Offset: 0

Views

Author

Keywords

Comments

Eventual period is (2,6). - Zak Seidov, Mar 05 2011
Decimal expansion of 323/990. - R. J. Mathar, Aug 22 2025

Examples

			3.464101615137754587054892683... = 3 + 1/(2 + 1/(6 + 1/(2 + 1/(6 + ...)))). - _Harry J. Smith_, Jun 02 2009
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010469 Decimal expansion, A010696.

Programs

  • Maple
    Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[12],300] (* Vladimir Joseph Stephan Orlovsky, Mar 05 2011 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 24000); x=contfrac(sqrt(12)); for (n=0, 20000, write("b040008.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 02 2009

Formula

G.f.: (3 + 2*x + 3*x^2)/(1 - x^2). - Stefano Spezia, Jul 26 2025

A176394 Decimal expansion of 3+2*sqrt(3).

Original entry on oeis.org

6, 4, 6, 4, 1, 0, 1, 6, 1, 5, 1, 3, 7, 7, 5, 4, 5, 8, 7, 0, 5, 4, 8, 9, 2, 6, 8, 3, 0, 1, 1, 7, 4, 4, 7, 3, 3, 8, 8, 5, 6, 1, 0, 5, 0, 7, 6, 2, 0, 7, 6, 1, 2, 5, 6, 1, 1, 1, 6, 1, 3, 9, 5, 8, 9, 0, 3, 8, 6, 6, 0, 3, 3, 8, 1, 7, 6, 0, 0, 0, 7, 4, 1, 6, 2, 2, 9, 2, 3, 7, 3, 5, 1, 4, 4, 9, 7, 1, 5, 1, 3, 5, 1, 2, 5
Offset: 1

Views

Author

Klaus Brockhaus, Apr 16 2010

Keywords

Comments

Continued fraction expansion of 3+2*sqrt(3) is A010696 preceded by 6.
a(n) = A010469(n) for n > 1.
Largest radius of three circles tangent to a circle of radius 1. - Charles R Greathouse IV, Jan 14 2013
For a spinning black hole the phase transition to positive specific heat happens at a point governed by 2*sqrt(3)-3 (according to a discussion on John Baez's blog), and not at the golden ratio as claimed by Paul Davis. - Peter Luschny, Mar 02 2013
In particular: a black hole with J > (2*sqrt(3)-3) Gm^2/c has positive specific heat, and negative specific heat if J is less, where J is its angular momentum, m is its mass, G is the gravitational constant, and c is the speed of light. For a solar mass black hole, this is 4.08 * 10^41 joule-seconds or a rotation every 1.61 days with the sun's inertia. - Charles R Greathouse IV, Sep 20 2013

Examples

			3+2*sqrt(3) = 6.46410161513775458705...
		

Crossrefs

Cf. A002194 (decimal expansion of sqrt(3)), A010469 (decimal expansion of sqrt(12)), A010696 (repeat 2, 6).

Programs

  • Mathematica
    Circs[n_] := With[{r = Sin[Pi/n]/(1 - Sin[Pi/n])}, Graphics[Append[Table[Circle[(r + 1) {Sin[2 Pi k/n], Cos[2 Pi k/n]}, r], {k, n}], {Blue, Circle[{0, 0}, 1]}]]]; Circs[3] (* Charles R Greathouse IV, Jan 14 2013 *)
  • PARI
    3+2*sqrt(3) \\ Charles R Greathouse IV, Jan 14 2013

Formula

Equals Sum_{n>=1} (sqrt(3)/2)^n = (sqrt(3)/2)/(1 - (sqrt(3)/2)). - Fred Daniel Kline, Mar 03 2014

A176053 Decimal expansion of (3+2*sqrt(3))/3.

Original entry on oeis.org

2, 1, 5, 4, 7, 0, 0, 5, 3, 8, 3, 7, 9, 2, 5, 1, 5, 2, 9, 0, 1, 8, 2, 9, 7, 5, 6, 1, 0, 0, 3, 9, 1, 4, 9, 1, 1, 2, 9, 5, 2, 0, 3, 5, 0, 2, 5, 4, 0, 2, 5, 3, 7, 5, 2, 0, 3, 7, 2, 0, 4, 6, 5, 2, 9, 6, 7, 9, 5, 5, 3, 4, 4, 6, 0, 5, 8, 6, 6, 6, 9, 1, 3, 8, 7, 4, 3, 0, 7, 9, 1, 1, 7, 1, 4, 9, 9, 0, 5, 0, 4, 5, 0, 4, 1
Offset: 1

Views

Author

Klaus Brockhaus, Apr 07 2010

Keywords

Comments

Continued fraction expansion of (3+2*sqrt(3))/3 is A010696.
a(n) = A020832(n-1) for n > 1; a(1) = 2.
This equals the ratio of the radius of the outer Soddy circle and the common radius of the three kissing circles. See A343235, also for links. - Wolfdieter Lang, Apr 19 2021
Previous comment is, together with A246724, the answer to the 1st problem proposed during the 4th Canadian Mathematical Olympiad in 1972. - Bernard Schott, Mar 20 2022

Examples

			2.15470053837925152901...
		

References

  • Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993 - Canadian Mathematical Society & Société Mathématique du Canada, Problem 1, 1972, page 37, 1993.

Crossrefs

Cf. A002194 (sqrt(3)), A020832 (1/sqrt(75)), A010696 (repeat 2, 6).

Programs

  • Mathematica
    RealDigits[1+2/3Sqrt[3],10,100][[1]] (* Paolo Xausa, Aug 10 2023 *)

Formula

Equals 2 + A246724.

A086970 Fix 1, then exchange the subsequent odd numbers in pairs.

Original entry on oeis.org

1, 5, 3, 9, 7, 13, 11, 17, 15, 21, 19, 25, 23, 29, 27, 33, 31, 37, 35, 41, 39, 45, 43, 49, 47, 53, 51, 57, 55, 61, 59, 65, 63, 69, 67, 73, 71, 77, 75, 81, 79, 85, 83, 89, 87, 93, 91, 97, 95, 101, 99, 105, 103, 109, 107, 113, 111, 117, 115, 121, 119
Offset: 0

Views

Author

Paul Barry, Jul 26 2003

Keywords

Comments

Partial sums are A086955.

Crossrefs

Programs

  • Magma
    [1] cat [2*n+1-2*(-1)^n: n in [1..70]]; // Vincenzo Librandi, Jun 21 2017
    
  • Mathematica
    Join[{1}, LinearRecurrence[{1, 1, -1}, {5, 3, 9}, 60]] (* Vincenzo Librandi, Jun 21 2017 *)
  • PARI
    Vec((1+4*x-3*x^2+2*x^3)/((1+x)*(1-x)^2) + O(x^100)) \\ Michel Marcus, Jun 21 2017

Formula

G.f.: (1+4*x-3*x^2+2*x^3)/((1+x)*(1-x)^2).
a(n) = n + abs(2 - (n + 1)*(-1)^n). - Lechoslaw Ratajczak, Dec 09 2016
a(n) = 2*A065190(n+1)-1 and a(n) = 2*A014681(n)+1. - Michel Marcus, Dec 10 2016
From Guenther Schrack, Jun 09 2017: (Start)
a(n) = 2*n + 1 - 2*(-1)^n for n > 0.
a(n) = 2*n + 1 - 2*cos(n*Pi) for n > 0.
a(n) = 4*n - a(n-1) for n > 1.
Linear recurrence: a(n) = a(n-1) + a(n-2) - a(n-3) for n > 3.
First differences: 2 - 4*(-1)^n for n > 1; -(-1)^n*A010696(n) for n > 1.
a(n) = A065164(n+1) + n for n > 0.
a(A014681(n)) = A005408(n) for n >= 0.
a(A005408(A014681(n)) for n >= 0.
a(n) = A005408(A103889(n)) for n >= 0.
A103889(a(n)) = 2*A065190(n+1) for n >= 0.
a(2*n-1) = A004766(n) for n > 0.
a(2*n+2) = A004767(n) for n >= 0. (End)

A141517 A141498(n)/A027760(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 47, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 1, 71, 73, 1, 1, 1, 5, 1, 7, 431, 1, 1, 1, 1, 97, 1, 1, 1, 1, 1, 1, 23, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 47, 1, 1, 1, 1, 1, 601, 1, 23, 1, 1, 5, 1, 1, 167, 7, 1, 431, 1, 1, 1, 1, 1, 1, 1, 1, 191, 193, 1
Offset: 1

Views

Author

Paul Curtz, Aug 11 2008

Keywords

Comments

Composite entries are a(100)=25, a(120)=1205, a(144)=55969, a(156)=4069 etc.

Programs

Extensions

Offset modified, extended by R. J. Mathar, Sep 03 2009

A155158 Period 4: repeat [1, 5, 7, 3].

Original entry on oeis.org

1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5
Offset: 0

Views

Author

Paul Curtz, Jan 21 2009

Keywords

Crossrefs

Programs

Formula

a(n) = A048473(n) mod 10.
First differences: a(n+1)-a(n) = (-1)^floor(n/2)*A010694(n+1).
Second differences: a(n+2)-2*a(n+1)+a(n) = (-1)^floor(1+n/2)*A010696(n).
Third differences: a(n+3)-3*a(n+2)+3*a(n+1)-a(n) = (-1)^floor((n+3)/2)*A105398(n).
G.f.: (1+4*x+3*x^2)/(1-x+x^2-x^3). - Colin Barker, Feb 28 2012
a(n) = a(n-1) - a(n-2) + a(n-3) for n>2. - Wesley Ivan Hurt, Jul 08 2016
Showing 1-10 of 11 results. Next