cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A067280 Number of terms in continued fraction for sqrt(n), excl. 2nd and higher periods.

Original entry on oeis.org

1, 2, 3, 1, 2, 3, 5, 3, 1, 2, 3, 3, 6, 5, 3, 1, 2, 3, 7, 3, 7, 7, 5, 3, 1, 2, 3, 5, 6, 3, 9, 5, 5, 5, 3, 1, 2, 3, 3, 3, 4, 3, 11, 9, 7, 13, 5, 3, 1, 2, 3, 7, 6, 7, 5, 3, 7, 8, 7, 5, 12, 5, 3, 1, 2, 3, 11, 3, 9, 7, 9, 3, 8, 6, 5, 13, 7, 5, 5, 3, 1, 2, 3, 3, 6, 11, 3, 7, 6, 3, 9, 9, 11, 17, 5, 5, 12, 5
Offset: 1

Views

Author

Frank Ellermann, Feb 23 2002

Keywords

Examples

			a(2)=2: [1,(2)+ ]; a(3)=3: [1,(1,2)+ ]; a(4)=1: [2]; a(5)=2: [2,(4)+ ].
		

References

  • H. Davenport, The Higher Arithmetic. Cambridge Univ. Press, 7th edition, 1999, table 1.

Crossrefs

Related sequences: 2 : A040000, ..., 44: A040037, 48: A040041, ..., 51: A040043, 56: A040048, 60: A040052, 63: A040055, ..., 66: A040057. 68: A040059, 72: A040063, 80: A040071.
Related sequences: 45: A010135, ..., 47: A010137, 52: A010138, ..., 55: A010141, 57: A010142, ..., 59: A010144. 61: A010145, 62: A010146. 67: A010147, 69: A010148, ..., 71: A010150.
Cf. A003285.

Programs

  • Python
    from sympy import continued_fraction_periodic
    def A067280(n): return len((a := continued_fraction_periodic(0,1,n))[:1]+(a[1] if a[1:] else [])) # Chai Wah Wu, Jun 14 2022

Formula

a(n) = A003285(n) + 1. - Andrey Zabolotskiy, Jun 23 2020

Extensions

Name clarified by Michel Marcus, Jun 22 2020

A010508 Decimal expansion of square root of 55.

Original entry on oeis.org

7, 4, 1, 6, 1, 9, 8, 4, 8, 7, 0, 9, 5, 6, 6, 2, 9, 4, 8, 7, 1, 1, 3, 9, 7, 4, 4, 0, 8, 0, 0, 7, 1, 3, 0, 6, 0, 9, 7, 9, 9, 0, 4, 3, 1, 9, 0, 9, 7, 5, 0, 1, 5, 9, 8, 7, 3, 2, 6, 2, 3, 2, 6, 4, 3, 4, 3, 8, 3, 0, 1, 8, 4, 3, 1, 3, 8, 5, 0, 2, 4, 2, 7, 5, 3, 0, 0, 9, 2, 1, 3, 1, 9, 5, 8, 2, 4, 9, 4
Offset: 1

Views

Author

Keywords

Comments

Continued fraction expansion is 7 followed by {2, 2, 2, 14} repeated. - Harry J. Smith, Jun 06 2009

Examples

			7.416198487095662948711397440800713060979904319097501598732623264343830... - _Harry J. Smith_, Jun 06 2009
		

Crossrefs

Cf. A010141 Continued fraction. - Harry J. Smith, Jun 06 2009

Programs

  • Mathematica
    RealDigits[N[Sqrt[55],200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 25 2011 *)
  • PARI
    { default(realprecision, 20080); x=sqrt(55); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010508.txt", n, " ", d)); } \\ Harry J. Smith, Jun 06 2009

A041095 Denominators of continued fraction convergents to sqrt(55).

Original entry on oeis.org

1, 2, 5, 12, 173, 358, 889, 2136, 30793, 63722, 158237, 380196, 5480981, 11342158, 28165297, 67672752, 975583825, 2018840402, 5013264629, 12045369660, 173648439869, 359342249398, 892332938665, 2144008126728, 30908446712857, 63960901552442, 158830249817741
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1, 2, 5, 12, 173, 358, 889, 2136]; [n le 8 select I[n] else 178*Self(n-4)-Self(n-8): n in [1..40]]; // Vincenzo Librandi, Dec 11 2013
  • Mathematica
    Denominator[Convergents[Sqrt[55], 30]] (* Vincenzo Librandi, Dec 11 2013 *)
    LinearRecurrence[{0,0,0,178,0,0,0,-1},{1,2,5,12,173,358,889,2136},30] (* Harvey P. Dale, Nov 24 2022 *)

Formula

G.f.: -(x^2-2*x-1)*(x^4+6*x^2+1) / (x^8-178*x^4+1). - Colin Barker, Nov 12 2013
a(n) = 178*a(n-4) - a(n-8). - Vincenzo Librandi, Dec 11 2013

Extensions

More terms from Colin Barker, Nov 12 2013
Showing 1-3 of 3 results.