cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A010521 Decimal expansion of square root of 69.

Original entry on oeis.org

8, 3, 0, 6, 6, 2, 3, 8, 6, 2, 9, 1, 8, 0, 7, 4, 8, 5, 2, 5, 8, 4, 2, 6, 2, 7, 4, 4, 9, 0, 7, 4, 9, 2, 0, 1, 0, 2, 3, 2, 2, 1, 4, 2, 4, 8, 9, 5, 5, 6, 5, 5, 7, 7, 9, 4, 3, 2, 1, 8, 8, 3, 6, 9, 0, 3, 7, 5, 8, 5, 0, 3, 3, 4, 2, 3, 1, 5, 1, 5, 7, 3, 8, 6, 7, 3, 9, 8, 5, 0, 8, 2, 3, 2, 3, 5, 7, 0, 5
Offset: 1

Views

Author

Keywords

Comments

Continued fraction expansion is 8 followed by {3, 3, 1, 4, 1, 3, 3, 16} repeated. - Harry J. Smith, Jun 08 2009

Examples

			8.306623862918074852584262744907492010232214248955655779432188369037585...
		

Crossrefs

Cf. A010148 Continued fraction.

Programs

  • Mathematica
    RealDigits[N[69^(1/2),200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Jan 22 2012 *)
  • PARI
    { default(realprecision, 20080); x=sqrt(69); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010521.txt", n, " ", d)); } \\ Harry J. Smith, Jun 08 2009

A067280 Number of terms in continued fraction for sqrt(n), excl. 2nd and higher periods.

Original entry on oeis.org

1, 2, 3, 1, 2, 3, 5, 3, 1, 2, 3, 3, 6, 5, 3, 1, 2, 3, 7, 3, 7, 7, 5, 3, 1, 2, 3, 5, 6, 3, 9, 5, 5, 5, 3, 1, 2, 3, 3, 3, 4, 3, 11, 9, 7, 13, 5, 3, 1, 2, 3, 7, 6, 7, 5, 3, 7, 8, 7, 5, 12, 5, 3, 1, 2, 3, 11, 3, 9, 7, 9, 3, 8, 6, 5, 13, 7, 5, 5, 3, 1, 2, 3, 3, 6, 11, 3, 7, 6, 3, 9, 9, 11, 17, 5, 5, 12, 5
Offset: 1

Views

Author

Frank Ellermann, Feb 23 2002

Keywords

Examples

			a(2)=2: [1,(2)+ ]; a(3)=3: [1,(1,2)+ ]; a(4)=1: [2]; a(5)=2: [2,(4)+ ].
		

References

  • H. Davenport, The Higher Arithmetic. Cambridge Univ. Press, 7th edition, 1999, table 1.

Crossrefs

Related sequences: 2 : A040000, ..., 44: A040037, 48: A040041, ..., 51: A040043, 56: A040048, 60: A040052, 63: A040055, ..., 66: A040057. 68: A040059, 72: A040063, 80: A040071.
Related sequences: 45: A010135, ..., 47: A010137, 52: A010138, ..., 55: A010141, 57: A010142, ..., 59: A010144. 61: A010145, 62: A010146. 67: A010147, 69: A010148, ..., 71: A010150.
Cf. A003285.

Programs

  • Python
    from sympy import continued_fraction_periodic
    def A067280(n): return len((a := continued_fraction_periodic(0,1,n))[:1]+(a[1] if a[1:] else [])) # Chai Wah Wu, Jun 14 2022

Formula

a(n) = A003285(n) + 1. - Andrey Zabolotskiy, Jun 23 2020

Extensions

Name clarified by Michel Marcus, Jun 22 2020

A041121 Denominators of continued fraction convergents to sqrt(69).

Original entry on oeis.org

1, 3, 10, 13, 62, 75, 287, 936, 15263, 46725, 155438, 202163, 964090, 1166253, 4462849, 14554800, 237339649, 726573747, 2417060890, 3143634637, 14991599438, 18135234075, 69397301663, 226327139064, 3690631526687, 11298221719125, 37585296684062, 48883518403187
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1, 3, 10, 13, 62, 75, 287, 936, 15263, 46725, 155438, 202163, 964090, 1166253, 4462849, 14554800]; [n le 16 select I[n] else 15550*Self(n-8)-Self(n-16): n in [1..40]]; // Vincenzo Librandi, Dec 11 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[69],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Jun 26 2011 *)
    Denominator[Convergents[Sqrt[69], 30]] (* Vincenzo Librandi, Dec 11 2013 *)
    LinearRecurrence[{0,0,0,0,0,0,0,15550,0,0,0,0,0,0,0,-1},{1,3,10,13,62,75,287,936,15263,46725,155438,202163,964090,1166253,4462849,14554800},30] (* Harvey P. Dale, Oct 18 2015 *)

Formula

G.f.: -(x^14 -3*x^13 +10*x^12 -13*x^11 +62*x^10 -75*x^9 +287*x^8 -936*x^7 -287*x^6 -75*x^5 -62*x^4 -13*x^3 -10*x^2 -3*x -1) / (x^16 -15550*x^8 +1). - Colin Barker, Nov 13 2013
a(n) = 15550*a(n-8) - a(n-16). - Vincenzo Librandi, Dec 11 2013

Extensions

More terms from Colin Barker, Nov 13 2013
Showing 1-3 of 3 results.