cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A331530 a(n) is the number of nonnegative integers that can be represented in a 7-segment display by using only n segments (version A010371).

Original entry on oeis.org

0, 0, 1, 0, 3, 3, 8, 7, 16, 23, 48, 70, 125, 192, 345, 561, 972, 1578, 2683, 4436, 7537, 12536, 21114, 35163, 59123, 98837, 166006, 277650, 465619, 779296, 1306674, 2188248, 3667717, 6142653, 10293460, 17242678, 28892956, 48402553, 81099234, 135863965, 227636213
Offset: 0

Views

Author

Stefano Spezia, Jan 19 2020

Keywords

Comments

The nonnegative integers are displayed as in A010371, where a 7 is depicted by 4 segments.
Given the set S = {2, 4, 5, 6, 7}, the function f defined in S as f(4) = 2, f(5) = f(6) = 3 and f(2) = f(7) = 1, a(n) is equal to the difference between the number b(n) of S-restricted f-weighted integer compositions of n with that of n-6, i.e., b(n-6). The latter one provides the number of all those excluded cases where a nonnegative integer is displayed with leading zeros. b(n) is calculated as the sum of polynomial coefficients or extended binomial coefficients (see Equation 3 in Eger) where the index of summation is positive and it covers the numbers of possible digits that can be displayed by n segments (see first formula).

Examples

			a(6) = 8 since 0, 6, 9, 14, 17, 41, 71, 111 are displayed by 6 segments.
   __       __      __
  |  |     |__     |__|     |  |__|
  |__|     |__|     __|     |     |
  (0)      (6)      (9)       (14)
     __                   __
  | |  |     |__|  |     |  |  |    |  |  |
  |    |        |  |        |  |    |  |  |
   (17)        (41)        (71)      (111)
		

Crossrefs

Programs

  • Mathematica
    P[x_]:=x^2+2x^4+3x^5+3x^6+x^7; b[n_]:=Coefficient[Sum[P[x]^k,{k,Max[1,Ceiling[n/7]],Floor[n/2]}],x,n];a[n_]:=b[n]-b[n-6]; Array[a,41,0]
  • PARI
    concat([0,0], Vec(x^2*(1 - x)*(1 + x)*(1 - x + x^2)*(1 + x + x^2)*(1 + 2*x^2 + 3*x^3 + 3*x^4 + x^5) / (1 - x^2 - 2*x^4 - 3*x^5 - 3*x^6 - x^7) + O(x^41))) \\ Colin Barker, Jan 20 2020

Formula

a(n) = b(n) - b(n-6), where b(n) = [x^n] Sum_{k=max(1,ceiling(n/7))..floor(n/2)} P(x)^k with P(x) = x^2 + 2*x^4 + 3*x^5 + 3*x^6 + x^7.
From Colin Barker, Jan 20 2020: (Start)
G.f.: x^2*(1 - x)*(1 + x)*(1 - x + x^2)*(1 + x + x^2)*(1 + 2*x^2 + 3*x^3 + 3*x^4 + x^5) / (1 - x^2 - 2*x^4 - 3*x^5 - 3*x^6 - x^7).
a(n) = a(n-2) + 2*a(n-4) + 3*a(n-5) + 3*a(n-6) + a(n-7) for n>13.
(End)

A143617 Where record values occur in A010371.

Original entry on oeis.org

0, 8, 10, 18, 20, 28, 68, 88, 108, 188, 200, 208, 288, 688, 888, 1088, 1888, 2008, 2088, 2888, 6888, 8888, 10888, 18888, 20088, 20888, 28888, 68888, 88888, 108888, 188888, 200888, 208888, 288888, 688888, 888888, 1088888, 1888888, 2008888, 2088888
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 27 2008

Keywords

Comments

a(n) is the least number using n + 6 (or n + 5 for n < 5) segments on a 7-segment display, when '6' uses 6 segments. This is essentially the same as A038619 (starts with 1, 2, 6 instead of 0) and A216261 (= a(n) uses n segments: has 4 values before 0 and 22 before 20). - M. F. Hasler, Jun 17 2020

Crossrefs

Programs

  • Mathematica
    Block[{f, s}, MapIndexed[(f[#2[[1]] - 1] = #1) &, {6, 2, 5, 5, 4, 5, 6, 4, 7, 6}]; s = Array[Total[f /@ IntegerDigits[#]] &, 10^6, 0]; Map[-1 + FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* Michael De Vlieger, Jun 23 2020 *)
  • PARI
    apply( {A143617(n)=if(n>11,self()(n-7)*10+8, n>9, 12*n+68, n>6, 20*n-72, n*5-2-n%2*3)}, [1..55]) \\ M. F. Hasler, Jun 23 2020

Formula

a(n+7) = 10*a(n) + 8 for n > 4.
A010371(a(n)) = A143616(n) and A010371(m) < A143616(n) for m < a(n).
A010371(a(n)) = n + 6 for n > 4. - M. F. Hasler, Jun 23 2020
a(n) = a(n-1) + 10*a(n-7) - 10*a(n-8). - Wesley Ivan Hurt, Jul 03 2020

A357997 a(n) is the number of times in the format hh:mm that can be represented in a 7-segment display by using only n segments (version A010371).

Original entry on oeis.org

1, 0, 5, 10, 16, 35, 66, 88, 119, 166, 187, 177, 161, 154, 129, 81, 35, 9, 1
Offset: 8

Views

Author

Stefano Spezia, Oct 23 2022

Keywords

Comments

Since 8 <= A357971(n) <= 26 the sequence is finite and begins with offset 8.

Crossrefs

Histogram of A357971.

Programs

  • Mathematica
    a055643[n_]:=FromDigits@ Apply[Join, PadLeft[#, 2] & /@ IntegerDigits@ IntegerDigits[n, 60]]; a010371[n_] := Plus @@ (IntegerDigits@ n /. {0 -> 6, 1 -> 2, 2 -> 5, 3 -> 5, 7 -> 4, 8 -> 7, 9 -> 6}); a[n_]:=a010371[a055643[n]]+6(4-Ceiling[Log10[a055643[n]+1]]); Table[Count[Join[{24},Array[a,1439]],n],{n,8,26}]

A385249 Number of iterations of seven segments count x -> A010371(x) to go from n to a fixed point.

Original entry on oeis.org

1, 2, 1, 1, 0, 0, 0, 1, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 2, 3, 2, 2, 4, 4, 2, 4, 2, 2, 3, 2, 2, 2, 4, 4, 2, 4, 2, 2, 3, 2, 4, 1, 2, 2, 3, 2, 4, 3, 2, 4, 2, 2, 4, 4, 2, 4, 2, 2, 3, 2, 3, 3, 2, 2, 4, 2, 3, 4, 3, 3, 4, 1, 2, 2, 3, 2, 4, 3, 2, 4, 3, 2, 3, 3, 2, 3, 3
Offset: 0

Views

Author

Marco Ripà, Jul 28 2025

Keywords

Comments

A010371 is a strictly decreasing function A010371(x) < x whenever x >= 10 and all single digit x reach a fixed point A010371(x) = x with x in {4, 5, 6}.
This sequence is unbounded and the first occurrence of a(n) = k is at n = A385250(k).

Examples

			For n = 12, the a(12) = 2 steps are 12 -> 7 -> 4 segments, and 4 is a fixed point A010371(4) = 4.
		

Crossrefs

Cf. A328330 (segments variation).

A143616 Record values in A010371.

Original entry on oeis.org

6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 27 2008

Keywords

Comments

a(n)=A010371(A143617(n)) and A010371(m)A143617(n);
{1,2,3,4,5,10} = complement(range of this sequence).

Programs

Formula

a(n) = n + 6 for n > 4. [Charles R Greathouse IV, Oct 26 2011]

A350438 a(n) is the number of integers that can be represented in a 7-segment display by using only n segments (version A010371).

Original entry on oeis.org

0, 0, 1, 1, 3, 6, 11, 14, 23, 39, 71, 118, 195, 317, 537, 906, 1533, 2550, 4261, 7119, 11973, 20073, 33650, 56277, 94286, 157960, 264843, 443656, 743269, 1244915, 2085970, 3494922, 5855965, 9810370, 16436113, 27536138, 46135634, 77295509, 129501787, 216963199, 363500178
Offset: 0

Views

Author

Stefano Spezia, Dec 31 2021

Keywords

Comments

The integers are displayed as in A010371, where a 7 is depicted by 4 segments. The negative integers are depicted by using 1 segment more for the minus sign.
Since the integer 0 is depicted by 6 segments, in order to avoid considering -0 in the case n = 7, a(7) is obtained by decreasing of a unit the result of the sum A331530(7) + A331530(6) = 7 + 8 = 15, i.e., a(7) = 15 - 1 = 14.

Examples

			a(7) = 14 since -111, -71, -41, -17, -14, -9, -6, 8, 12, 13, 15, 21, 31 and 51 are displayed by 7 segments.
                      __                              __
  __   |  |  |    __ |  |  |    __ |__|  |    __   | |  |    __   | |__|
       |  |  |          |  |          |  |         |    |         |    |
       (-111)        (-71)         (-41)          (-17)          (-14)
      __         __      __        __        __        __     __
  __ |__|    __ |__     |__|    |  __|    |  __|    | |__     __|  |
      __|       |__|    |__|    | |__     |  __|    |  __|   |__   |
    (-9)       (-6)     (8)      (12)      (13)      (15)      (21)
  __         __
  __|  |    |__   |
  __|  |     __|  |
   (31)       (51)
		

Crossrefs

Programs

  • Mathematica
    P[x_]:=x^2+2x^4+3x^5+3x^6+x^7; c[n_]:=Coefficient[Sum[P[x]^k, {k, Max[1, Ceiling[n/7]], Floor[n/2]}], x, n]; b[n_]:=c[n]-c[n-6]; (* A331530 *)
    a[n_]:=If[n!=7,b[n]+b[n-1],14]; Array[a, 41, 0]

Formula

a(7) = 14, otherwise a(n) = A331530(n) + A331530(n-1).
G.f.: x^2*(1 + x + 2*x^2 + 5*x^3 + 6*x^4 + 3*x^5 -2x^8- 3*x^9 - 3*x^10 - x^11)/(1 - x^2 -2 x^4 - 3*x^5 - 3*x^6 - x^7).
a(n) = a(n-2) + 2*a(n-4) + 3*a(n-5) + 3*a(n-6) + a(n-7) for n > 13.

A006942 Number of segments used to represent n on calculator display, variant 5: digits '6', '7' and '9' use 6, 3 and 6 segments, respectively.

Original entry on oeis.org

6, 2, 5, 5, 4, 5, 6, 3, 7, 6, 8, 4, 7, 7, 6, 7, 8, 5, 9, 8, 11, 7, 10, 10, 9, 10, 11, 8, 12, 11, 11, 7, 10, 10, 9, 10, 11, 8, 12, 11, 10, 6, 9, 9, 8, 9, 10, 7, 11, 10, 11, 7, 10, 10, 9, 10, 11, 8, 12, 11, 12, 8, 11, 11, 10, 11, 12, 9, 13, 12, 9, 5, 8, 8, 7, 8, 9
Offset: 0

Views

Author

Keywords

Comments

a(A216261(n)) = n and a(m) <> n for m < A216261(n). - Reinhard Zumkeller, Mar 15 2013
If we mark with * resp. ' the graphical representations which use more resp. less segments, we have the following variants:
A063720 (6', 7', 9'), A277116 (6*, 7', 9'), A074458 (6*, 7*, 9'),
_____________ this: A006942 (6*, 7', 9*), A010371 (6*, 7*, 9*).
Sequences A234691, A234692 and variants make precise which segments are lit in each digit. These are related through the Hamming weight function A000120, e.g., A010371(n) = A000120(A234691(n)) = A000120(A234692(n)). - M. F. Hasler, Jun 17 2020

Examples

			As depicted below, zero uses 6 segments, so a(0)=6.
   _     _  _       _   _   _   _   _
  | | |  _| _| |_| |_  |_    | |_| |_|
  |_| | |_  _|   |  _| |_|   | |_|  _|
.
[Edited by _Jon E. Schoenfield_, Jul 30 2017]
		

References

  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 65.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A216261 (least inverse), A165244 (sorted digits), A302552 (primes), A328330 (iterations), A331529 (histogram).
Variants are A010371, A063720, A074458, A277116, see comments.
See also A234691, A234692, A000120.

Programs

  • Haskell
    a006942 n = a006942_list !! n
    a006942_list = [6,2,5,5,4,5,6,3,7,6] ++ f 10 where
       f x = (a006942 x' + a006942 d) : f (x + 1)
             where (x',d) = divMod x 10
    -- Reinhard Zumkeller, Mar 15 2013
    
  • Maple
    A006942 := proc(n) local d,dig,j,s: if(n=0)then return 6:fi: dig:=[6,2,5,5,4,5,6,3,7,6]: d:=convert(n,base,10): s:=0: for j from 1 to nops(d) do s:=s+dig[d[j]+1]: od: return s: end: seq(A006942(n),n=0..100); # Nathaniel Johnston, May 08 2011
  • Mathematica
    MapIndexed[ (f[First[#2] - 1] = #1)& , {6, 2, 5, 5, 4, 5, 6, 3, 7, 6}]; a[n_] := Plus @@ f /@ IntegerDigits[n]; Table[a[n], {n, 0, 76}] (* Jean-François Alcover, Sep 25 2012 *)
    a[n_] := Plus @@ (IntegerDigits@ n /. {0 -> 6, 1 -> 2, 2 -> 5, 3 -> 5, 7 -> 3, 8 -> 7, 9 -> 6}); Array[a, 77, 0] (* Robert G. Wilson v, Jun 20 2018 *)
  • PARI
    a(n)=if(n==0, return(6)); my(d=digits(n),v=vector(10)); for(i=1,#d, v[d[i]+1]++); v*[6, 2, 5, 5, 4, 5, 6, 3, 7, 6]~ \\ Charles R Greathouse IV, Feb 05 2018
    
  • Python
    def a(n): return sum([6, 2, 5, 5, 4, 5, 6, 3, 7, 6][int(d)] for d in str(n))
    print([a(n) for n in range(77)]) # Michael S. Branicky, Jun 02 2021

Formula

a(n) = a(floor(n/10)) + a(n mod 10) for n > 9. - Reinhard Zumkeller, Mar 15 2013
a(n) = A010371(n) - A102679(n) + A102681(n) (subtract the number of digits 7 in n) = A277116(n) + A102683(n) (add number of digits 9 in n); and in particular, A063720(n) <= A277116(n) <= a(n) = A010371(n). - M. F. Hasler, Jun 17 2020

Extensions

More terms from Matthew Conroy, Sep 13 2001

A063720 Number of segments lit in a 7-segment display (as on a calculator) to represent the number n, variant 0: '6', '7' and '9' use 5, 3 and 5 segments, respectively.

Original entry on oeis.org

6, 2, 5, 5, 4, 5, 5, 3, 7, 5, 8, 4, 7, 7, 6, 7, 7, 5, 9, 7, 11, 7, 10, 10, 9, 10, 10, 8, 12, 10, 11, 7, 10, 10, 9, 10, 10, 8, 12, 10, 10, 6, 9, 9, 8, 9, 9, 7, 11, 9, 11, 7, 10, 10, 9, 10, 10, 8, 12, 10, 11, 7, 10, 10, 9, 10, 10, 8, 12, 10, 9, 5, 8, 8, 7, 8, 8, 6, 10, 8, 13, 9, 12, 12, 11, 12
Offset: 0

Views

Author

Deepan Majmudar (deepan.majmudar(AT)compaq.com), Aug 23 2001

Keywords

Comments

If we mark with * resp. ' the glyph variants (graphical representations) which use more resp. less segments, we have the following variants:
A063720 (this: 6', 7', 9'), A277116 (6*, 7', 9'), A074458 (6*, 7*, 9'), _________________________ A006942 (6*, 7', 9*), A010371 (6*, 7*, 9*). Sequences A234691, A234692 and variants make precise which segments are lit in each digit. These are related through the Hamming weight function A000120, e.g., A010371(n) = A000120(A234691(n)) = A000120(A234692(n)). - M. F. Hasler, Jun 17 2020

Examples

			The number 8 on a digital readout (e.g., on a calculator display) can be represented as
   -
  | |
   -
  | |
   -
which uses all 7 segments. Therefore a(8) = 7.
From _M. F. Hasler_, Jun 17 2020: (Start)
This sequence uses the following representations:
       _       _   _       _       _   _   _
      | |   |  _|  _| |_| |_  |_    | |_| |_|
      |_|   | |_   _|   |  _| |_|   | |_|   |
.
See crossrefs for other variants. (End)
		

Crossrefs

For variants see A006942, A010371, A074458, A277116 (cf. comments).
Other related sequences: A018846, A018847, A018849, A038136, A053701.

Programs

  • Haskell
    a063720 n = a063720_list !! n
    a063720_list = [6,2,5,5,4,5,5,3,7,5] ++ f 10 where
       f x = (a063720 x' + a063720 d) : f (x + 1)
             where (x',d) = divMod x 10
    -- Reinhard Zumkeller, Mar 15 2013
    
  • Mathematica
    a[n_ /; n <= 9] := a[n] = {6, 2, 5, 5, 4, 5, 5, 3, 7, 5}[[n+1]]; a[n_] := a[n] = a[Quotient[n, 10]] + a[Mod[n, 10]]; Table[a[n], {n, 0, 85}] (* Jean-François Alcover, Aug 12 2013, after Reinhard Zumkeller *)
    Table[Total[IntegerDigits[n]/.{0->6,1->2,2->5,3->5,6->5,7->3,8->7,9->5}],{n,0,90}] (* Harvey P. Dale, Mar 27 2021 *)
  • PARI
    apply( {A063720(n)=digits(6255455375)[n%10+1]+if(n>9, self()(n\10))}, [0..99]) \\ M. F. Hasler, Jun 17 2020

Formula

a(n) = a(floor(n/10)) + a(n mod 10) for n > 9. - Reinhard Zumkeller, Mar 15 2013
a(n) <= A277116(n) <= min{A006942(n), A074458(n)} <= A010371(n); differences between these are given, e.g., by A102677(n) - A102679(n) (= number of digits 7 in n). - M. F. Hasler, Jun 17 2020

Extensions

More terms from Matthew Conroy, Sep 13 2001
Definition clarified by M. F. Hasler, Jun 17 2020

A074458 Number of segments lit to display the number n on a 7-segment display (as in pocket calculators): variant where '6', '7' and '9' use 6, 4 resp. 5 segments.

Original entry on oeis.org

6, 2, 5, 5, 4, 5, 6, 4, 7, 5, 8, 4, 7, 7, 6, 7, 8, 6, 9, 7, 11, 7, 10, 10, 9, 10, 11, 9, 12, 10, 11, 7, 10, 10, 9, 10, 11, 9, 12, 10, 10, 6, 9, 9, 8, 9, 10, 8, 11, 9, 11, 7, 10, 10, 9, 10, 11, 9, 12, 10, 12, 8, 11, 11, 10, 11, 12, 10, 13, 11, 10, 6, 9, 9, 8, 9, 10, 8, 11
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 22 2002

Keywords

Comments

Sequences A234691 and A234692 use one bit for each lit segment. See crossrefs for other variants. - M. F. Hasler, Jun 17 2020

Examples

			LED display:
   _       _   _       _   _   _   _   _
  | |   |  _|  _| |_| |_  |_  | | |_| |_|
  |_|   | |_   _|   |  _| |_|   | |_|   |
.
so we have a(0) = 6, a(1) = 2, a(2) = 5 ...
		

Crossrefs

Cf. A074459.
For other versions of this sequence, see A006942 (7 with one segment less), A063720 (6 and 7 with one segment less), A010371 (9 with one segment more), A277116 (7 with one segment less, 9 with one segment more).

Programs

  • PARI
    apply( {A074458(n)=digits(6255456475)[n%10+1]+if(n>9,self()(n\10))}, [0..99]) \\ M. F. Hasler, Jun 17 2020

Formula

From M. F. Hasler, Jun 17 2020: (Start)
a(n) = a(n mod 10) + a(floor(n/10)) for n > 9.
a(n) = A006942(n) - A102679(n) + A102681(n). (End)

Extensions

Example edited by Jon E. Schoenfield, Jul 30 2017
Edited and extended to n > 9 by M. F. Hasler, Jun 17 2020

A277116 Number of segments used to represent the number n on a 7-segment display: variant where digits 6, 7 and 9 use 6, 3 and 5 segments, respectively.

Original entry on oeis.org

6, 2, 5, 5, 4, 5, 6, 3, 7, 5, 8, 4, 7, 7, 6, 7, 8, 5, 9, 7, 11, 7, 10, 10, 9, 10, 11, 8, 12, 10, 11, 7, 10, 10, 9, 10, 11, 8, 12, 10, 10, 6, 9, 9, 8, 9, 10, 7, 11, 9, 11, 7, 10, 10, 9, 10, 11, 8, 12, 10, 12, 8, 11, 11, 10, 11, 12, 9, 13, 11, 9, 5, 8, 8, 7, 8, 9
Offset: 0

Views

Author

Eric Ginsburg, Sep 30 2016

Keywords

Comments

Another version of A006942. Here the digit "6" is represented with six segments (the same as in A006942) but the digit "9" is represented with five segments instead of six segments. - Omar E. Pol, Sep 30 2016
If we mark with * resp. ' the graphical representations which use one more resp. one less segment, we have the following variants:
A063720 (6', 7', 9'), A277116 (6*, 7', 9'), A074458 (6*, 7*, 9'),
___________________ A006942 (6*, 7', 9*), A010371 (6*, 7*, 9*).
Sequences A234691 and A234692 make precise which segments are lit in each digit. They are related through the Hamming weight function A000120, e.g., A010371(n) = A000120(A234691(n)) = A000120(A234692(n)). - M. F. Hasler, Jun 17 2020

Examples

			For n = 29, digit '2' uses 5 segments and digit '9' uses 5 segments. So, a(29) = 10. - _Indranil Ghosh_, Feb 02 2017
The digits are represented as follows:
   _     _  _       _   _   _   _   _
  | | |  _| _| |_| |_  |_    | |_| |_|
  |_| | |_  _|   |  _| |_|   | |_|   | . - _M. F. Hasler_, Jun 17 2020
		

Crossrefs

Segment variations: A006942, A010371, A063720, A074458.

Programs

  • Mathematica
    Table[Total[IntegerDigits[n] /. {0 -> 6, 1 -> 2, 2 -> 5, 3 -> 5, 6 -> 6, 7 -> 3, 8 -> 7, 9 -> 5}], {n, 0, 120}] (* Michael De Vlieger, Sep 30 2016 *)
  • PARI
    a(n) = my(segm=[6, 2, 5, 5, 4, 5, 6, 3, 7, 5], d=digits(n), s=0); if(n==0, s=6, for(k=1, #d, s=s+segm[d[k]+1])); s \\ Felix Fröhlich, Oct 05 2016
    
  • Python
    def A277116(n):
        s=0
        for i in str(n):
            s+=[6,2,5,5,4,5,6,3,7,5][int(i)]
        return s # Indranil Ghosh, Feb 02 2017

Formula

a(n) = A006942(n) - A102683(n). - Omar E. Pol, Sep 30 2016
a(n) = A063720(n) + A102677(n) - A102679(n) (add number of digits 6)
= A074458(n) - A102679(n) + A102681(n) (subtract number of digits 7)
and thus A063720(n) <= a(n) <= min(A074458(n), A006942(n)) <= A010371(n). - M. F. Hasler, Jun 17 2020

Extensions

Better definition and more terms from Omar E. Pol, Sep 30 2016
Edited by M. F. Hasler, Jun 17 2020
Showing 1-10 of 24 results. Next