A343314 a(n) is the number of nonnegative integers that can be represented in a 7-segment display by using only n segments (version A063720).
0, 0, 1, 1, 2, 7, 5, 16, 19, 39, 77, 103, 226, 334, 636, 1106, 1827, 3386, 5568, 10059, 17281, 29890, 52771, 90283, 159191, 274976, 479035, 835476, 1447278, 2528496, 4386143, 7640592, 13293308, 23106132, 40245277, 69946521, 121762316, 211791205, 368418674, 641125867
Offset: 0
Examples
a(6) = 5 since 0, 14, 41, 77 and 111 are displayed by 6 segments. __ __ __ | | | |__| |__| | | | | | | |__| | | | | | | | | | (0) (14) (41) (77) (111)
Links
- Steffen Eger, Restricted Weighted Integer Compositions and Extended Binomial Coefficients, Journal of Integer Sequences, Vol. 16, Article 13.1.3, (2013).
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,5,1,1).
- Index entries for sequences related to calculator display
- Index entries for sequences related to compositions
Programs
-
Mathematica
P[x_]:=x^2+x^3+x^4+5x^5+x^6+x^7; b[n_]:=Coefficient[Sum[P[x]^k, {k, Max[1, Ceiling[n/7]], Floor[n/2]}], x, n]; a[n_]:=b[n]-b[n-6]; Array[a, 40, 0]
Formula
G.f.: x^2*(1 - x)*(1 + x)*(1 - x + x^2)*(1 + x + x^2)*(1 + x + x^2 + 5*x^3 + x^4 + x^5)/(1 - x^2 - x^3 - x^4 - 5*x^5 - x^6 - x^7).
a(n) = a(n-2) + a(n-3) + a(n-4) + 5*a(n-5) + a(n-6) + a(n-7) for n > 13.
a(n) = b(n) - b(n-6), where b(n) = [x^n] Sum_{k=max(1,ceiling(n/7))..floor(n/2)} P(x)^k with P(x) = x^2 + x^3 + x^4 + 5*x^5 + x^6 + x^7.
Comments