cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A248268 Egyptian fraction representation of sqrt(42) (A010496) using a greedy function.

Original entry on oeis.org

6, 3, 7, 220, 209746, 1800026104632, 11289682294671072755879655, 1247832270676194041105480584245717817404868332358363, 5623554373314472317858205865619051220489843727752125404940182021329874216730979924009375686764591034334
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 42]]

A040035 Continued fraction for sqrt(42).

Original entry on oeis.org

6, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2, 12, 2
Offset: 0

Views

Author

Keywords

Examples

			6.4807406984078602309659674... = 6 + 1/(2 + 1/(12 + 1/(2 + 1/(12 + ...)))). - _Harry J. Smith_, Jun 05 2009
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010496 (decimal expansion), A040011.

Programs

  • Maple
    Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[42],300] (* Vladimir Joseph Stephan Orlovsky, Mar 06 2011 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 29000); x=contfrac(sqrt(42)); for (n=0, 20000, write("b040035.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 05 2009

Formula

From Stefano Spezia, Jul 27 2025: (Start)
a(n) = 2*A040011(n).
G.f.: 2*(3 + x + 3*x^2)/(1 - x^2). (End)

A041070 Numerators of continued fraction convergents to sqrt(42).

Original entry on oeis.org

6, 13, 162, 337, 4206, 8749, 109194, 227137, 2834838, 5896813, 73596594, 153090001, 1910676606, 3974443213, 49603995162, 103182433537, 1287793197606, 2678768828749, 33433019142594, 69544807113937
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: -(x+1)*(x^2-7*x-6) / (x^4-26*x^2+1). - Colin Barker, Nov 04 2013

A041071 Denominators of continued fraction convergents to sqrt(42).

Original entry on oeis.org

1, 2, 25, 52, 649, 1350, 16849, 35048, 437425, 909898, 11356201, 23622300, 294823801, 613269902, 7654062625, 15921395152, 198710804449, 413343004050, 5158826853049, 10730996710148, 133930787374825, 278592571459798, 3477041644892401, 7232675861244600
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010496, A040035, A041070 (numerators).

Programs

  • Magma
    I:=[1, 2, 25, 52]; [n le 4 select I[n] else 26*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 10 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[42],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 22 2011 *)
    Denominator[Convergents[Sqrt[42], 30]] (* Vincenzo Librandi, Dec 10 2013 *)
    LinearRecurrence[{0,26,0,-1},{1,2,25,52},30] (* Harvey P. Dale, Oct 17 2019 *)

Formula

G.f.: -(x^2-2*x-1) / (x^4-26*x^2+1). - Colin Barker, Nov 12 2013
a(n) = 26*a(n-2) - a(n-4). - Vincenzo Librandi, Dec 10 2013

Extensions

More terms from Colin Barker, Nov 12 2013

A176107 Decimal expansion of (6+sqrt(42))/4.

Original entry on oeis.org

3, 1, 2, 0, 1, 8, 5, 1, 7, 4, 6, 0, 1, 9, 6, 5, 0, 5, 7, 7, 4, 1, 4, 9, 1, 8, 5, 9, 0, 2, 1, 9, 9, 9, 1, 6, 4, 4, 2, 6, 3, 0, 1, 0, 7, 6, 7, 6, 4, 5, 8, 6, 6, 3, 7, 4, 2, 7, 8, 3, 8, 5, 9, 9, 4, 5, 2, 4, 0, 4, 3, 4, 4, 4, 6, 1, 0, 1, 1, 0, 9, 2, 8, 5, 0, 0, 9, 0, 2, 2, 6, 6, 5, 1, 4, 0, 2, 5, 5, 8, 9, 1, 8, 8, 6
Offset: 1

Views

Author

Klaus Brockhaus, Apr 10 2010

Keywords

Comments

Continued fraction expansion of (6+sqrt(42))/4 is A010706.

Examples

			(6+sqrt(42))/4 = 3.12018517460196505774...
		

Crossrefs

Cf. A010496 (decimal expansion of sqrt(42)), A010706 (repeat 3, 8).

Programs

  • Mathematica
    RealDigits[(6+Sqrt[42])/4,10,120][[1]] (* Harvey P. Dale, Jun 22 2012 *)

A176216 Decimal expansion of (6+sqrt(42))/3.

Original entry on oeis.org

4, 1, 6, 0, 2, 4, 6, 8, 9, 9, 4, 6, 9, 2, 8, 6, 7, 4, 3, 6, 5, 5, 3, 2, 2, 4, 7, 8, 6, 9, 5, 9, 9, 8, 8, 8, 5, 9, 0, 1, 7, 3, 4, 7, 6, 9, 0, 1, 9, 4, 4, 8, 8, 4, 9, 9, 0, 3, 7, 8, 4, 7, 9, 9, 2, 6, 9, 8, 7, 2, 4, 5, 9, 2, 8, 1, 3, 4, 8, 1, 2, 3, 8, 0, 0, 1, 2, 0, 3, 0, 2, 2, 0, 1, 8, 7, 0, 0, 7, 8, 5, 5, 8, 4, 8
Offset: 1

Views

Author

Klaus Brockhaus, Apr 12 2010

Keywords

Comments

Continued fraction expansion of (6+sqrt(42))/3 is A010711.

Examples

			(6+sqrt(42))/3 = 4.16024689946928674365...
		

Crossrefs

Cf. A010496 (decimal expansion of sqrt(42)), A010711 (repeat 4, 6).

A176396 Decimal expansion of (6+sqrt(42))/2.

Original entry on oeis.org

6, 2, 4, 0, 3, 7, 0, 3, 4, 9, 2, 0, 3, 9, 3, 0, 1, 1, 5, 4, 8, 2, 9, 8, 3, 7, 1, 8, 0, 4, 3, 9, 9, 8, 3, 2, 8, 8, 5, 2, 6, 0, 2, 1, 5, 3, 5, 2, 9, 1, 7, 3, 2, 7, 4, 8, 5, 5, 6, 7, 7, 1, 9, 8, 9, 0, 4, 8, 0, 8, 6, 8, 8, 9, 2, 2, 0, 2, 2, 1, 8, 5, 7, 0, 0, 1, 8, 0, 4, 5, 3, 3, 0, 2, 8, 0, 5, 1, 1, 7, 8, 3, 7, 7, 2
Offset: 1

Views

Author

Klaus Brockhaus, Apr 16 2010

Keywords

Comments

Continued fraction expansion of (6+sqrt(42))/2 is A010711 preceded by 6.

Examples

			(6+sqrt(42))/2 = 6.24037034920393011548...
		

Crossrefs

Cf. A010496 (decimal expansion of sqrt(42)), A010711 (repeat 4, 6).

Programs

  • Mathematica
    RealDigits[(6+Sqrt[42])/2,10,120][[1]] (* Harvey P. Dale, May 25 2012 *)

A176454 Decimal expansion of (12+2*sqrt(42))/3.

Original entry on oeis.org

8, 3, 2, 0, 4, 9, 3, 7, 9, 8, 9, 3, 8, 5, 7, 3, 4, 8, 7, 3, 1, 0, 6, 4, 4, 9, 5, 7, 3, 9, 1, 9, 9, 7, 7, 7, 1, 8, 0, 3, 4, 6, 9, 5, 3, 8, 0, 3, 8, 8, 9, 7, 6, 9, 9, 8, 0, 7, 5, 6, 9, 5, 9, 8, 5, 3, 9, 7, 4, 4, 9, 1, 8, 5, 6, 2, 6, 9, 6, 2, 4, 7, 6, 0, 0, 2, 4, 0, 6, 0, 4, 4, 0, 3, 7, 4, 0, 1, 5, 7, 1, 1, 6, 9, 6
Offset: 1

Views

Author

Klaus Brockhaus, Apr 20 2010

Keywords

Comments

Continued fraction expansion of (12+2*sqrt(42))/3 is A010706 preceded by 8.

Examples

			(12+2*sqrt(42))/3 = 8.32049379893857348731...
		

Crossrefs

Cf. A010496 (decimal expansion of sqrt(42)), A010706 (repeat 3, 8).

Programs

  • Mathematica
    RealDigits[(12+2*Sqrt[42])/3,10,120][[1]] (* Harvey P. Dale, Nov 23 2016 *)
Showing 1-8 of 8 results.