cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A248295 Egyptian fraction representation of sqrt(71) (A010523) using a greedy function.

Original entry on oeis.org

8, 3, 11, 525, 386544, 639498711870, 1018235602235689213572994, 6335607869766803762689695208858285361004070429148, 42457213694266417320054923496312615766199040305766336893524891089914272708684998227290613582884885
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 71]]

A010150 Continued fraction for sqrt(71).

Original entry on oeis.org

8, 2, 2, 1, 7, 1, 2, 2, 16, 2, 2, 1, 7, 1, 2, 2, 16, 2, 2, 1, 7, 1, 2, 2, 16, 2, 2, 1, 7, 1, 2, 2, 16, 2, 2, 1, 7, 1, 2, 2, 16, 2, 2, 1, 7, 1, 2, 2, 16, 2, 2, 1, 7, 1, 2, 2, 16, 2, 2, 1, 7, 1, 2, 2, 16, 2, 2, 1, 7, 1, 2, 2, 16, 2, 2, 1, 7, 1
Offset: 0

Views

Author

Keywords

Examples

			8.426149773176358630634139906... = 8 + 1/(2 + 1/(2 + 1/(1 + 1/(7 + ...)))). - _Harry J. Smith_, Jun 08 2009
		

Crossrefs

Cf. A010523 Decimal expansion. - Harry J. Smith, Jun 08 2009

Programs

  • Mathematica
    ContinuedFraction[Sqrt[71],300] (* Vladimir Joseph Stephan Orlovsky, Mar 08 2011 *)
    PadRight[{8},120,{16,2,2,1,7,1,2,2}] (* Harvey P. Dale, Apr 17 2015 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 20000); x=contfrac(sqrt(71)); for (n=0, 20000, write("b010150.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 08 2009

A041124 Numerators of continued fraction convergents to sqrt(71).

Original entry on oeis.org

8, 17, 42, 59, 455, 514, 1483, 3480, 57163, 117806, 292775, 410581, 3166842, 3577423, 10321688, 24220799, 397854472, 819929743, 2037713958, 2857643701, 22041219865, 24898863566, 71838946997, 168576757560, 2769067067957, 5706710893474, 14182488854905
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[71], 30]] (* Vincenzo Librandi, Oct 29 2013 *)
    LinearRecurrence[{0,0,0,0,0,0,0,6960,0,0,0,0,0,0,0,-1},{8,17,42,59,455,514,1483,3480,57163,117806,292775,410581,3166842,3577423,10321688,24220799},40] (* Harvey P. Dale, Aug 14 2023 *)

Formula

G.f.: -(x^15 -8*x^14 +17*x^13 -42*x^12 +59*x^11 -455*x^10 +514*x^9 -1483*x^8 -3480*x^7 -1483*x^6 -514*x^5 -455*x^4 -59*x^3 -42*x^2 -17*x -8) / (x^16 -6960*x^8 +1). - Colin Barker, Nov 05 2013

Extensions

More terms from Colin Barker, Nov 05 2013

A041125 Denominators of continued fraction convergents to sqrt(71).

Original entry on oeis.org

1, 2, 5, 7, 54, 61, 176, 413, 6784, 13981, 34746, 48727, 375835, 424562, 1224959, 2874480, 47216639, 97307758, 241832155, 339139913, 2615811546, 2954951459, 8525714464, 20006380387, 328627800656, 677261981699, 1683151764054, 2360413745753, 18206047984325
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1, 2, 5, 7, 54, 61, 176, 413, 6784, 13981, 34746, 48727, 375835, 424562, 1224959, 2874480]; [n le 16 select I[n] else 6960*Self(n-8)-Self(n-16): n in [1..40]]; // Vincenzo Librandi, Dec 11 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[71],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Jun 26 2011 *)
    Denominator[Convergents[Sqrt[71], 30]] (* Vincenzo Librandi, Dec 11 2013 *)
    LinearRecurrence[{0,0,0,0,0,0,0,6960,0,0,0,0,0,0,0,-1},{1,2,5,7,54,61,176,413,6784,13981,34746,48727,375835,424562,1224959,2874480},30] (* Harvey P. Dale, Apr 09 2022 *)

Formula

G.f.: -(x^14 -2*x^13 +5*x^12 -7*x^11 +54*x^10 -61*x^9 +176*x^8 -413*x^7 -176*x^6 -61*x^5 -54*x^4 -7*x^3 -5*x^2 -2*x -1) / (x^16 -6960*x^8 +1). - Colin Barker, Nov 13 2013
a(n) = 6960*a(n-8) - a(n-16). - Vincenzo Librandi, Dec 11 2013

Extensions

More terms from Colin Barker, Nov 13 2013

A176714 Decimal expansion of sqrt(16394397).

Original entry on oeis.org

4, 0, 4, 8, 9, 9, 9, 5, 0, 6, 0, 5, 0, 8, 4, 6, 6, 3, 0, 5, 5, 4, 9, 3, 7, 7, 1, 4, 0, 5, 7, 7, 5, 1, 4, 4, 0, 2, 9, 5, 2, 5, 6, 4, 3, 0, 3, 5, 2, 7, 2, 7, 8, 9, 5, 6, 5, 7, 9, 3, 7, 7, 1, 9, 7, 5, 5, 0, 5, 1, 7, 3, 5, 5, 0, 2, 5, 8, 4, 3, 7, 2, 4, 7, 7, 3, 3, 9, 5, 6, 5, 8, 3, 8, 8, 0, 3, 8, 7, 3, 0, 1, 5, 8, 6
Offset: 4

Views

Author

Klaus Brockhaus, Apr 24 2010

Keywords

Comments

Continued fraction expansion of sqrt(16394397) is 4048 followed by (repeat 1, 2023, 2, 2023, 1, 8096).
sqrt(16394397) = sqrt(3)*sqrt(19)*sqrt(71)*sqrt(4051).

Examples

			sqrt(16394397) = 4048.99950605084663055493...
		

Crossrefs

Cf. A002194 (decimal expansion of sqrt(3)), A010475 (decimal expansion of sqrt(19)), A010523 (decimal expansion of sqrt(71)), A176715 (decimal expansion of sqrt(4051)), A176713 (decimal expansion of (4047+sqrt(16394397))/142).

Programs

  • Maple
    Digits:=100: evalf(sqrt(16394397)); # Wesley Ivan Hurt, Jul 07 2014
  • Mathematica
    RealDigits[Sqrt[16394397], 10, 100, 3] (* Wesley Ivan Hurt, Jul 07 2014 *)
Showing 1-5 of 5 results.