cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010762 a(n) = floor(n/2) * floor(n/3).

Original entry on oeis.org

0, 0, 1, 2, 2, 6, 6, 8, 12, 15, 15, 24, 24, 28, 35, 40, 40, 54, 54, 60, 70, 77, 77, 96, 96, 104, 117, 126, 126, 150, 150, 160, 176, 187, 187, 216, 216, 228, 247, 260, 260, 294, 294, 308, 330, 345, 345, 384, 384, 400, 425, 442, 442, 486, 486, 504, 532, 551
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the number of 5 boxes polyomino (invert U patterns) packing into n X n square. The 6 boxes 2 X 3 (rectangular patterns) also gives the same sequence but difference in squares left. See illustration in links. - Kival Ngaokrajang, Nov 10 2013

Crossrefs

Programs

  • Magma
    [Floor(n/2)*Floor(n/3) : n in [1..50]]; // Wesley Ivan Hurt, Jun 22 2014
    
  • Maple
    [ seq(floor(n/2)*floor(n/3), n=1..64) ];
  • Mathematica
    Table[Floor[n/2]*Floor[n/3], {n, 1, 70}] (* Clark Kimberling, May 18 2012 *)
    CoefficientList[Series[- x^2 (x^7 + x^6 + x^5 + 2 x^4 + 3 x^3 + x^2 + 2 x+1)/((x - 1)^3 (x + 1)^2 (x^2 - x + 1) (x^2 + x + 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 15 2013 *)
    LinearRecurrence[{0,1,1,0,-1,1,0,-1,-1,0,1},{0,0,1,2,2,6,6,8,12,15,15},60] (* Harvey P. Dale, Jan 09 2016 *)
  • PARI
    a(n) = (n\2) * (n\3) \\ Charles R Greathouse IV, Oct 07 2015; corrected by Michel Marcus, Jun 01 2025

Formula

a(n) = A004526(n) * A002264(n). - Reinhard Zumkeller, Jul 25 2005
a(n) = a(n-2) + a(n-3) - a(n-5) + a(n-6) - a(n-8) - a(n-9) + a(n-11). - Clark Kimberling, May 18 2012
G.f.: -x^3*(x^7+x^6+x^5+2*x^4+3*x^3+x^2+2*x+1) / ((x-1)^3*(x+1)^2*(x^2-x+1)*(x^2+x+1)^2). - Colin Barker, Apr 05 2013
Sum_{n>=3} (-1)^(n+1)/a(n) = sqrt(3)*Pi/4 + 9*log(3)/4 - 2*log(2) - 3/2. - Amiram Eldar, Mar 30 2023
E.g.f.: (3*(x - 1)*x*cosh(x) - sqrt(3)*exp(-x/2)*(1 + exp(x) + 4*x)*sin(sqrt(3)*x/2)/2 + 3*cos(sqrt(3)*x/2)*sinh(x/2) + 3*(1 + x^2)*sinh(x))/18. - Stefano Spezia, Jun 01 2025