A010786 Floor-factorial numbers: a(n) = Product_{k=1..n} floor(n/k).
1, 1, 2, 3, 8, 10, 36, 42, 128, 216, 600, 660, 3456, 3744, 9408, 18900, 61440, 65280, 279936, 295488, 1152000, 2116800, 4878720, 5100480, 31850496, 41472000, 93450240, 163762560, 568995840, 589317120, 3265920000, 3374784000, 11324620800, 19269550080, 42188636160
Offset: 0
Examples
For n=4 the a(4)=8 functions are given by the image sequences <1,2,3,4>, <1,4,3,4>, <2,2,3,4>, <2,4,3,4>, <3,2,3,4>, <3,4,3,4>, <4,2,3,4>, and <4,4,3,4>. [_Dennis P. Walsh_, Nov 06 2014]
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Vaclav Kotesovec, Graph - The asymptotic ratio (1000000 terms)
- Eric Weisstein's World of Mathematics, Alladi-Grinstead Constant
- Index entries for sequences related to factorial numbers
Programs
-
Haskell
a010786 n = product $ map (div n) [1..n] -- Reinhard Zumkeller, Feb 26 2012
-
Magma
[&*[n div i: i in [1..n]]: n in [1..35]]; // Vincenzo Librandi, Oct 03 2018
-
Maple
a := n -> mul( floor(n/k), k=1..n);
-
Mathematica
Table[Product[Floor[n/k],{k,n}],{n,40}] (* Harvey P. Dale, May 09 2017 *)
-
PARI
vector(50, n, prod(k=1, n, n\k)) \\ Michel Marcus, Nov 10 2014
Formula
GCD(a(n), a(n+1)) = A208448(n). - Reinhard Zumkeller, Feb 26 2012
From Vaclav Kotesovec, Oct 03 2018: (Start)
log(a(n)) ~ c * (n - log(2*Pi*n)/2), where c = 0.7885...
Conjecture: c = A085361. (End)
From Ridouane Oudra, Jan 18 2025: (Start)
a(n) = Product_{k=1..n} ((k+1)/k)^floor(n/(k+1)).
a(n) = Product_{k=1..n} k^A075993(n, k).
a(n) = A092143(n)/f(n), where f(n) = Product_{k=1..n} ((floor(n/k)-1)!).
Extensions
More terms from Hieronymus Fischer, Jul 08 2007
Edited by N. J. A. Sloane, Jul 05 2008 at the suggestion of Rick L. Shepherd
a(0)=1 prepended by Alois P. Heinz, Oct 30 2023
Comments