cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010842 Expansion of e.g.f.: exp(2*x)/(1-x).

Original entry on oeis.org

1, 3, 10, 38, 168, 872, 5296, 37200, 297856, 2681216, 26813184, 294947072, 3539368960, 46011804672, 644165281792, 9662479259648, 154599668219904, 2628194359869440, 47307498477912064, 898842471080853504, 17976849421618118656, 377513837853982588928
Offset: 0

Views

Author

Keywords

Comments

Incomplete Gamma Function at 2, more precisely: a(n) = exp(2)*Gamma(1+n,2).
Let P(A) be the power set of an n-element set A. Then a(n) = the total number of ways to add 0 or more elements of A to each element x of P(A) where the elements to add are not elements of x and order of addition is important. - Ross La Haye, Nov 19 2007
a(n) is the number of ways to split the set {1,2,...,n} into two disjoint subsets S,T with S union T = {1,2,...,n} and linearly order S and then choose a subset of T. - Geoffrey Critzer, Mar 10 2009

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.1.2.

Crossrefs

Programs

  • Magma
    m:=45; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(2*x)/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Oct 16 2018
  • Maple
    G(x):=exp(2*x)/(1-x): f[0]:=G(x): for n from 1 to 19 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..19); # Zerinvary Lajos, Apr 03 2009
    seq(simplify(exp(1)^2*GAMMA(n+1, 2)), n=0..19); # Peter Luschny, Apr 28 2016
    seq(simplify(KummerU(-n, -n, 2)), n=0..21); # Peter Luschny, May 10 2022
  • Mathematica
    With[{r = Round[n! E^2 - 2^(n + 1)/(n + 1)]}, r - Mod[r, 2^(n - Floor[2/n + Log2[n]])]] (* for n>=4; Stan Wagon, Apr 28 2016 *)
    a[n_] := n! Sum[2^i/i!, {i, 0, n}]
    Table[a[n], {n, 0, 21}] (* Gerry Martens , May 06 2016 *)
    With[{nn=30},CoefficientList[Series[Exp[2x]/(1-x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, May 27 2019 *)
  • PARI
    x='x+O('x^44); Vec(serlaplace(exp(2*x)/(1-x))) \\ Joerg Arndt, Apr 29 2016
    

Formula

a(n) = row sums of A090802. - Ross La Haye, Aug 18 2006
a(n) = n*a(n-1) + 2^n = (n+2)*a(n-1) - (2*n-2)*a(n-2) = n!*Sum_{j=0..n} floor(2^j/j!). - Henry Bottomley, Jul 12 2001
a(n) is the permanent of the n X n matrix with 3's on the diagonal and 1's elsewhere. a(n) = Sum_{k=0..n} A008290(n, k)*3^k. - Philippe Deléham, Dec 12 2003
Binomial transform of A000522. - Ross La Haye, Sep 15 2004
a(n) = Sum_{k=0..n} k!*binomial(n, k)*2^(n-k). - Paul Barry, Apr 22 2005
a(n) = A066534(n) + 2^n. - Ross La Haye, Nov 16 2005
G.f.: hypergeom([1,k],[],x/(1-2*x))/(1-2*x) with k=1,2,3 is the generating function for A010842, A081923, and A082031. - Mark van Hoeij, Nov 08 2011
E.g.f.: 1/E(0), where E(k) = 1 - x/(1-2/(2+(k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
G.f.: 1/Q(0), where Q(k)= 1 - 2*x - x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 18 2013
a(n) ~ n! * exp(2). - Vaclav Kotesovec, Jun 01 2013
From Peter Bala, Sep 25 2013: (Start)
a(n) = n!*e^2 - Sum_{k >= 0} 2^(n + k + 1)/((n + 1)*...*(n + k + 1)).
= n!*e^2 - e^2*( Integral_{t = 0..2} t^n*exp(-t) dt )
= e^2*( Integral_{t >= 2} t^n*exp(-t) dt )
= e^2*( Integral_{t >= 0} t^n*exp(-t)*Heaviside(t-2) dt ),
an integral representation of a(n) as the n-th moment of a nonnegative function on the positive half-axis.
Bottomley's second-order recurrence above a(n) = (n + 2)*a(n-1) - 2*(n - 1)*a(n-2) has n! as a second solution. This yields the finite continued fraction expansion a(n)/n! = 1/(1 - 2/(3 - 2/(4 - 4/(5 - ... - 2*(n - 1)/(n + 2))))) valid for n >= 2. Letting n tend to infinity gives the infinite continued fraction expansion e^2 = 1/(1 - 2/(3 - 2/(4 - 4/(5 - ... - 2*(n - 1)/(n + 2 - ...))))). (End)
a(n) = 2^(n+1)*U(1, n+2, 2), where U is the Bessel U function. - Peter Luschny, Nov 26 2014
For n >= 4, a(n) = r - (r mod 2^(n - floor((2/n) + log_2(n)))) where r = n! * e^2 - 2^(n+1)/(n+1). - Stan Wagon, Apr 28 2016
G.f.: A(x) = 1/(1 - 2*x - x/(1 - x/(1 - 2*x - 2*x/(1 - 2*x/(1 - 2*x - 3*x/(1 - 3*x/(1 - 2*x - 4*x/(1 - 4*x/(1 - 2*x - ... ))))))))). - Peter Bala, May 26 2017
a(n) = Sum_{k=0..n} (-1)^(n-k)*A137346(n, k). - Mélika Tebni, May 10 2022 [This is equivalent to a(n) = KummerU(-n, -n, 2). - Peter Luschny, May 10 2022]
a(n) = F(n), where the function F(x) := 2^(x+1) * Integral_{t >= 0} e^(-2*t)*(1 + t)^x dt smoothly interpolates this sequence to all real values of x. - Peter Bala, Sep 05 2023