cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A040090 Continued fraction for sqrt(101).

Original entry on oeis.org

10, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20
Offset: 0

Views

Author

Keywords

Examples

			10 + 1/(20 + 1/(20 + 1/(20 + 1/(20 + ...)))) = sqrt(101).
		

Crossrefs

Cf. A248803 (decimal expansion), A041180/A041181 (convergents).

Programs

Formula

From Elmo R. Oliveira, Feb 11 2024: (Start)
a(n) = 20 = A010859(n) for n >= 1.
G.f.: 10*(1+x)/(1-x).
E.g.f.: 20*exp(x) - 10.
a(n) = 10*A040000(n) = 5*A040002(n) = 2*A040020(n). (End)

A023018 Number of partitions of n into parts of 20 kinds.

Original entry on oeis.org

1, 20, 230, 1960, 13685, 82524, 443870, 2175800, 9869990, 41907380, 168012824, 640438680, 2334121995, 8171039800, 27580783270, 90058003200, 285253928790, 878572253720, 2636748302650, 7725084195240, 22130265931900, 62079251390180
Offset: 0

Views

Author

Keywords

Comments

a(n) is Euler transform of A010859. - Alois P. Heinz, Oct 17 2008

Crossrefs

20th column of A144064. - Alois P. Heinz, Oct 17 2008

Programs

  • Maple
    with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*20, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Oct 17 2008
  • Mathematica
    CoefficientList[Series[1/QPochhammer[x]^20, {x, 0, 30}], x] (* Indranil Ghosh, Mar 27 2017 *)
  • PARI
    Vec(1/eta(x)^20 + O(x^30)) \\ Indranil Ghosh, Mar 27 2017

Formula

G.f.: Product_{m>=1} 1/(1-x^m)^20.
a(0) = 1, a(n) = (20/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 27 2017
a(n) ~ m^((m+1)/4) * exp(Pi*sqrt(2*m*n/3)) / (2^((3*m+5)/4) * 3^((m+1)/4) * n^((m+3)/4)) * (1 - ((9+Pi^2)*m^2+36*m+27) / (24*Pi*sqrt(6*m*n))), set m = 20. - Vaclav Kotesovec, Jun 28 2025

A166577 Inverse binomial transform of A166517.

Original entry on oeis.org

1, 4, -5, 10, -20, 40, -80, 160, -320, 640, -1280, 2560, -5120, 10240, -20480, 40960, -81920, 163840, -327680, 655360, -1310720, 2621440, -5242880, 10485760, -20971520, 41943040, -83886080, 167772160, -335544320, 671088640, -1342177280, 2684354560, -5368709120
Offset: 0

Views

Author

Paul Curtz, Oct 17 2009

Keywords

Comments

The definition assumes that the offset of A166517 is changed to 0.
A166517 mod 9 yields a periodic sequence with period 1, 5, 4, 8, 7, 2.
This set of numbers in the period appears also in A153130, A146501, and A166304.

Crossrefs

Programs

  • Mathematica
    Join[{1,4},NestList[-2#&,-5,40]] (* Harvey P. Dale, Aug 02 2012 *)
    Join[{1, 4}, LinearRecurrence[{-2}, {-5}, 48]] (* G. C. Greubel, May 17 2016 *)

Formula

a(n) = -2*a(n-1), n>2.
a(n) = (-1)^(n+1)*A020714(n-2), n>1.
From Colin Barker, Jan 07 2013: (Start)
a(n) = -5*(-1)^n*2^(n-2) for n>1.
G.f.: (3*x^2+6*x+1)/(2*x+1). (End)
E.g.f.: (9/4) + (3/2)*x - (5/4)*exp(-2*x). - Alejandro J. Becerra Jr., Feb 15 2021

Extensions

Edited, comments not concerning this sequence removed, and extended by R. J. Mathar, Oct 21 2009
Showing 1-3 of 3 results.