A013939 Partial sums of sequence A001221 (number of distinct primes dividing n).
0, 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15, 17, 19, 20, 21, 23, 24, 26, 28, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 45, 47, 49, 51, 53, 54, 56, 58, 60, 61, 64, 65, 67, 69, 71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 93, 96, 97, 99, 101, 102, 104, 107, 108, 110, 112
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Distinct Prime Factors
Crossrefs
Programs
-
Haskell
a013939 n = a013939_list !! (n-1) a013939_list = scanl1 (+) $ map a001221 [1..] -- Reinhard Zumkeller, Feb 16 2012
-
Magma
[(&+[Floor(n/NthPrime(k)): k in [1..n]]): n in [1..70]]; // G. C. Greubel, Nov 24 2018
-
Maple
A013939 := proc(n) option remember; `if`(n = 1, 0, a(n) + iquo(n+1, ithprime(n+1))) end: seq(A013939(i), i = 1..69); # Peter Luschny, Jul 16 2011
-
Mathematica
a[n_] := Sum[Floor[n/Prime[k]], {k, 1, n}]; Table[a[n], {n, 1, 69}] (* Jean-François Alcover, Jun 11 2012, from 2nd formula *) Accumulate[PrimeNu[Range[120]]] (* Harvey P. Dale, Jun 05 2015 *)
-
PARI
t=0;vector(99,n,t+=omega(n)) \\ Charles R Greathouse IV, Jan 11 2012
-
PARI
a(n)=my(s);forprime(p=2,n,s+=n\p);s \\ Charles R Greathouse IV, Jan 11 2012
-
PARI
a(n) = sum(k=1, sqrtint(n), k * (primepi(n\k) - primepi(n\(k+1)))) + sum(k=1, n\(sqrtint(n)+1), if(isprime(k), n\k, 0)); \\ Daniel Suteu, Nov 24 2018
-
Python
from sympy.ntheory import primefactors print([sum(len(primefactors(k)) for k in range(1,n+1)) for n in range(1, 121)]) # Indranil Ghosh, Mar 19 2017
-
Python
from sympy import primerange def A013939(n): return sum(n//p for p in primerange(n+1)) # Chai Wah Wu, Oct 06 2024
-
Sage
[sum(floor(n/nth_prime(k)) for k in (1..n)) for n in (1..70)] # G. C. Greubel, Nov 24 2018
Formula
a(n) = Sum_{k <= n} omega(k).
a(n) = Sum_{k = 1..n} floor( n/prime(k) ).
a(n) = a(n-1) + A001221(n).
a(n) = Sum_{k=1..n} pi(floor(n/k)). - Vladeta Jovovic, Jun 18 2006
a(n) = n log log n + O(n). - Charles R Greathouse IV, Jan 11 2012
a(n) = n*(log log n + B) + o(n), where B = 0.261497... is the Mertens constant A077761. - Arkadiusz Wesolowski, Oct 18 2013
G.f.: (1/(1 - x))*Sum_{k>=1} x^prime(k)/(1 - x^prime(k)). - Ilya Gutkovskiy, Jan 02 2017
a(n) = Sum_{k=1..floor(sqrt(n))} k * (pi(floor(n/k)) - pi(floor(n/(k+1)))) + Sum_{p prime <= floor(n/(1+floor(sqrt(n))))} floor(n/p). - Daniel Suteu, Nov 24 2018
a(n) = Sum_{k>=1} k * A346617(n,k). - Alois P. Heinz, Aug 19 2021
Extensions
More terms from Henry Bottomley, Jul 03 2001