cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A013939 Partial sums of sequence A001221 (number of distinct primes dividing n).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15, 17, 19, 20, 21, 23, 24, 26, 28, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 45, 47, 49, 51, 53, 54, 56, 58, 60, 61, 64, 65, 67, 69, 71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 93, 96, 97, 99, 101, 102, 104, 107, 108, 110, 112
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a013939 n = a013939_list !! (n-1)
    a013939_list = scanl1 (+) $ map a001221 [1..]
    -- Reinhard Zumkeller, Feb 16 2012
    
  • Magma
    [(&+[Floor(n/NthPrime(k)): k in [1..n]]): n in [1..70]]; // G. C. Greubel, Nov 24 2018
    
  • Maple
    A013939 := proc(n) option remember;  `if`(n = 1, 0, a(n) + iquo(n+1, ithprime(n+1))) end:
    seq(A013939(i), i = 1..69);  # Peter Luschny, Jul 16 2011
  • Mathematica
    a[n_] := Sum[Floor[n/Prime[k]], {k, 1, n}]; Table[a[n], {n, 1, 69}] (* Jean-François Alcover, Jun 11 2012, from 2nd formula *)
    Accumulate[PrimeNu[Range[120]]] (* Harvey P. Dale, Jun 05 2015 *)
  • PARI
    t=0;vector(99,n,t+=omega(n)) \\ Charles R Greathouse IV, Jan 11 2012
    
  • PARI
    a(n)=my(s);forprime(p=2,n,s+=n\p);s \\ Charles R Greathouse IV, Jan 11 2012
    
  • PARI
    a(n) = sum(k=1, sqrtint(n), k * (primepi(n\k) - primepi(n\(k+1)))) + sum(k=1, n\(sqrtint(n)+1), if(isprime(k), n\k, 0)); \\ Daniel Suteu, Nov 24 2018
    
  • Python
    from sympy.ntheory import primefactors
    print([sum(len(primefactors(k)) for k in range(1,n+1)) for n in range(1, 121)]) # Indranil Ghosh, Mar 19 2017
    
  • Python
    from sympy import primerange
    def A013939(n): return sum(n//p for p in primerange(n+1)) # Chai Wah Wu, Oct 06 2024
    
  • Sage
    [sum(floor(n/nth_prime(k)) for k in (1..n)) for n in (1..70)] # G. C. Greubel, Nov 24 2018

Formula

a(n) = Sum_{k <= n} omega(k).
a(n) = Sum_{k = 1..n} floor( n/prime(k) ).
a(n) = a(n-1) + A001221(n).
a(n) = A093614(n) - A048865(n); see also A006218.
A027748(a(A000040(n))+1) = A000040(n), A082287(a(n)+1) = n.
a(n) = Sum_{k=1..n} pi(floor(n/k)). - Vladeta Jovovic, Jun 18 2006
a(n) = n log log n + O(n). - Charles R Greathouse IV, Jan 11 2012
a(n) = n*(log log n + B) + o(n), where B = 0.261497... is the Mertens constant A077761. - Arkadiusz Wesolowski, Oct 18 2013
G.f.: (1/(1 - x))*Sum_{k>=1} x^prime(k)/(1 - x^prime(k)). - Ilya Gutkovskiy, Jan 02 2017
a(n) = Sum_{k=1..floor(sqrt(n))} k * (pi(floor(n/k)) - pi(floor(n/(k+1)))) + Sum_{p prime <= floor(n/(1+floor(sqrt(n))))} floor(n/p). - Daniel Suteu, Nov 24 2018
a(n) = Sum_{k>=1} k * A346617(n,k). - Alois P. Heinz, Aug 19 2021
a(n) = A001222(A048803(n+1)). - Flávio V. Fernandes, Jan 14 2025

Extensions

More terms from Henry Bottomley, Jul 03 2001