cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A056170 Number of non-unitary prime divisors of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 2, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Labos Elemer, Jul 27 2000

Keywords

Comments

A prime factor of n is unitary iff its exponent is 1 in the prime factorization of n. (Of course for any prime p, GCD(p, n/p) is either 1 or p. For a unitary prime factor it must be 1.)
Number of squared primes dividing n. - Reinhard Zumkeller, May 18 2002
a(A005117(n)) = 0; a(A013929(n)) > 0; a(A190641(n)) = 1. - Reinhard Zumkeller, Dec 29 2012
First differences of A013940. - Jason Kimberley, Feb 01 2017
Number of exponents larger than 1 in the prime factorization of n. - Antti Karttunen, Nov 28 2017

Crossrefs

Programs

Formula

Additive with a(p^e) = 0 if e = 1, 1 otherwise.
G.f.: Sum_{k>=1} x^(prime(k)^2)/(1 - x^(prime(k)^2)). - Ilya Gutkovskiy, Jan 01 2017
a(n) = log_2(A000005(A071773(n))). - observed by Velin Yanev, Aug 20 2017, confirmed by Antti Karttunen, Nov 28 2017
From Antti Karttunen, Nov 28 2017: (Start)
a(n) = A001221(n) - A056169(n).
a(n) = omega(A000188(n)) = omega(A003557(n)) = omega(A057521(n)) = omega(A295666(n)), where omega = A001221.
For all n >= 1 it holds that:
a(A003557(n)) = A295659(n).
a(n) >= A162641(n).
(End)
Dirichlet g.f.: primezeta(2s)*zeta(s). - Benedict W. J. Irwin, Jul 11 2018
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = Sum_{p prime} 1/p^2 = 0.452247... (A085548). - Amiram Eldar, Nov 01 2020
a(n) = A275812(n) - A046660(n). - Amiram Eldar, Jan 09 2024

Extensions

Minor edits by Franklin T. Adams-Watters, Mar 23 2011

A057627 Number of nonsquarefree numbers not exceeding n.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 7, 8, 9, 9, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 16, 16, 16, 17, 18, 19, 19, 20, 20, 21, 21, 22, 22, 22, 22, 23, 23, 23, 24, 25, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 28, 29, 29, 29
Offset: 1

Views

Author

Labos Elemer, Oct 10 2000

Keywords

Comments

Number of integers k in A013929 in the range 1 <= k <= n.
This sequence is different from A013940, albeit the first 35 terms are identical.
Asymptotic to k*n where k = 1 - 1/zeta(2) = 1 - 6/Pi^2 = A229099. - Daniel Forgues, Jan 28 2011
This sequence is the sequence of partial sums of A107078 (not of A056170). - Jason Kimberley, Feb 01 2017
Number of partitions of 2n into two parts with the smallest part nonsquarefree. - Wesley Ivan Hurt, Oct 25 2017

Examples

			a(36)=13 because 13 nonsquarefree numbers exist which do not exceed 36:{4,8,9,12,16,18,20,24,25,27,28,32,36}.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get terms up to a(N)
    B:= Array(1..N, numtheory:-issqrfree):
    C:= map(`if`,B,0,1):
    A:= map(round,Statistics:-CumulativeSum(C)):
    seq(A[n],n=1..N); # Robert Israel, Jun 03 2014
  • Mathematica
    Accumulate[Table[If[SquareFreeQ[n],0,1],{n,80}]] (* Harvey P. Dale, Jun 04 2014 *)
  • PARI
    a(n) = my(s=0); forsquarefree(k=1, sqrtint(n), s += (-1)^(#k[2]~) * (n\k[1]^2)); n - s; \\ Charles R Greathouse IV, May 18 2015; corrected by Daniel Suteu, May 11 2023
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A057627(n): return n-sum(mobius(k)*(n//k**2) for k in range(1,isqrt(n)+1)) # Chai Wah Wu, May 10 2024
  • Scheme
    (define (A057627 n) (- n (A013928 (+ n 1))))
    

Formula

a(n) = n - A013928(n+1) = n - Sum_{k=1..n} mu(k)^2.
G.f.: Sum_{k>=1} (1 - mu(k)^2)*x^k/(1 - x). - Ilya Gutkovskiy, Apr 17 2017

Extensions

Offset and formula corrected by Antti Karttunen, Jun 03 2014

A322068 a(n) = (1/2)*Sum_{p prime <= n} floor(n/p) * floor(1 + n/p).

Original entry on oeis.org

0, 0, 1, 2, 4, 5, 10, 11, 15, 18, 25, 26, 36, 37, 46, 54, 62, 63, 78, 79, 93, 103, 116, 117, 137, 142, 157, 166, 184, 185, 216, 217, 233, 247, 266, 278, 308, 309, 330, 346, 374, 375, 416, 417, 443, 467, 492, 493, 533, 540, 575, 595, 625, 626, 671, 687, 723, 745
Offset: 0

Views

Author

Daniel Suteu, Nov 25 2018

Keywords

Comments

Partial sums of A069359.

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add(i*pi(floor(n/i)), i=1..n), n=0..60); # Ridouane Oudra, Oct 16 2019
  • Mathematica
    a[n_] := Module[{s=0, p=2}, While[p<=n, s += (Floor[n/p] * Floor[1 + n/p]); p=NextPrime[p]]; s]/2; Array[a, 100, 0] (* Amiram Eldar, Nov 25 2018 *)
  • PARI
    a(n) = my(s=0); forprime(p=2, n, s+=(n\p)*(1+n\p)); s/2;
    
  • PARI
    a(n) = sum(k=1, sqrtint(n), k*(k+1) * (primepi(n\k) - primepi(n\(k+1))))/2 + sum(k=1, n\(sqrtint(n)+1), if(isprime(k), (n\k)*(1+n\k), 0))/2;

Formula

a(n) ~ A085548 * n*(n+1)/2.
a(n) = Sum_{p prime <= n} A000217(floor(n/p)).
a(n) = (Sum_{k=1..floor(sqrt(n))} k*(k+1) * (pi(floor(n/k)) - pi(floor(n/(k+1)))) + Sum_{p prime <= floor(n/(1+floor(sqrt(n))))} floor(n/p)*floor(1+n/p))/2, where pi(x) is the prime-counting function (A000720).
a(n) = Sum_{i=1..n} i*pi(floor(n/i)), where pi(n) = A000720(n). - Ridouane Oudra, Oct 16 2019

A013941 a(n) = Sum_{k = 1..n} floor(n/prime(k)^3).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A013940.
Partial sums of A295659.

Programs

Formula

G.f.: (1/(1 - x))*Sum_{k>=1} x^(prime(k)^3)/(1 - x^(prime(k)^3)). - Ilya Gutkovskiy, Feb 11 2017

A057639 First differences of zero-sites (A028442) of Mertens's function A002321.

Original entry on oeis.org

37, 1, 18, 7, 28, 8, 44, 4, 1, 9, 1, 3, 1, 2, 48, 17, 1, 3, 1, 2, 16, 75, 2, 1, 1, 20, 2, 1, 2, 4, 1, 1, 2, 27, 8, 2, 1, 1, 2, 1, 5, 1, 5, 1, 2, 1, 1, 1, 2, 1, 109, 4, 66, 1, 27, 1, 1, 144, 4, 8, 2, 1, 2, 13, 1, 2, 9, 1, 1, 24, 1, 3, 16, 8, 6, 1, 2, 3, 4, 2, 1, 2, 5, 1, 2, 4, 3, 2, 1, 3, 1, 82, 3, 5
Offset: 1

Views

Author

Labos Elemer, Oct 11 2000

Keywords

Comments

Mertens's function (A002321) is oscillating. The width of its waves is given here.

Crossrefs

Programs

  • Mathematica
    Differences[Position[Accumulate[Array[MoebiusMu,1500]],0]//Flatten] (* Harvey P. Dale, Nov 10 2016 *)
  • PARI
    lista(kmax) = {my(s = 0, k1 = 2); for(k2 = 3, kmax, s += moebius(k2); if(s == 0, print1(k2 - k1, ", "); k1 = k2));} \\ Amiram Eldar, Jun 09 2024

Formula

a(n) = A028442(n+1) - A028442(n).

Extensions

Offset corrected by Amiram Eldar, Jun 09 2024
Showing 1-5 of 5 results.