cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A013961 a(n) = sigma_13(n), the sum of the 13th powers of the divisors of n.

Original entry on oeis.org

1, 8193, 1594324, 67117057, 1220703126, 13062296532, 96889010408, 549822930945, 2541867422653, 10001220711318, 34522712143932, 107006334784468, 302875106592254, 793811662272744, 1946196290656824, 4504149450301441, 9904578032905938, 20825519793796029, 42052983462257060
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_{p prime} ((p^((e(p)+1)*k)) - 1)/(p^k - 1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
By Fermat's little theorem n^13 == n (mod 13). Hence sigma_13(n) == sigma_(1) (mod 13). In fact, sigma_13(n) == sigma_(1) (mod 2730), where 2730 = 2*3*5*7*13 = the numerator of Bernoulli(12). - Peter Bala, Jan 12 2025

Crossrefs

Programs

  • Magma
    [DivisorSigma(13, n): n in [1..20]]; // Vincenzo Librandi, Sep 10 2016
    
  • Maple
    A013961 := proc(n)
        numtheory[sigma][13](n) ;
    end proc: # R. J. Mathar, Sep 21 2017
  • Mathematica
    DivisorSigma[13, Range[30]] (* Vincenzo Librandi, Sep 10 2016 *)
  • PARI
    my(N=99, q='q+O('q^N)); Vec(sum(n=1, N, n^13*q^n/(1-q^n))) \\ Altug Alkan, Sep 10 2016
    
  • PARI
    a(n) = sigma(n, 13); \\ Michel Marcus, Sep 10 2016
  • Sage
    [sigma(n,13)for n in range(1,16)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: Sum_{k>=1} k^13*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Dirichlet g.f.: zeta(s-13)*zeta(s). - Ilya Gutkovskiy, Sep 10 2016
Empirical: Sum_{n>=1} a(n)/exp(2*Pi*n) = 1/24. - Simon Plouffe, Mar 01 2021
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(13*e+13)-1)/(p^13-1).
Sum_{k=1..n} a(k) = zeta(14) * n^14 / 14 + O(n^15). (End)