A013961 a(n) = sigma_13(n), the sum of the 13th powers of the divisors of n.
1, 8193, 1594324, 67117057, 1220703126, 13062296532, 96889010408, 549822930945, 2541867422653, 10001220711318, 34522712143932, 107006334784468, 302875106592254, 793811662272744, 1946196290656824, 4504149450301441, 9904578032905938, 20825519793796029, 42052983462257060
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for sequences related to sigma(n).
Programs
-
Magma
[DivisorSigma(13, n): n in [1..20]]; // Vincenzo Librandi, Sep 10 2016
-
Maple
A013961 := proc(n) numtheory[sigma][13](n) ; end proc: # R. J. Mathar, Sep 21 2017
-
Mathematica
DivisorSigma[13, Range[30]] (* Vincenzo Librandi, Sep 10 2016 *)
-
PARI
my(N=99, q='q+O('q^N)); Vec(sum(n=1, N, n^13*q^n/(1-q^n))) \\ Altug Alkan, Sep 10 2016
-
PARI
a(n) = sigma(n, 13); \\ Michel Marcus, Sep 10 2016
-
Sage
[sigma(n,13)for n in range(1,16)] # Zerinvary Lajos, Jun 04 2009
Formula
G.f.: Sum_{k>=1} k^13*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Dirichlet g.f.: zeta(s-13)*zeta(s). - Ilya Gutkovskiy, Sep 10 2016
Empirical: Sum_{n>=1} a(n)/exp(2*Pi*n) = 1/24. - Simon Plouffe, Mar 01 2021
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(13*e+13)-1)/(p^13-1).
Sum_{k=1..n} a(k) = zeta(14) * n^14 / 14 + O(n^15). (End)
Comments