cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A110161 Expansion of x*(1-x^2)/(1-x^2+x^4).

Original entry on oeis.org

0, 1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, -1, 0
Offset: 0

Views

Author

Paul Barry, Jul 14 2005

Keywords

Comments

Transform of A002605 by the Riordan array A102587. Denominator is the 12th cyclotomic polynomial.

Crossrefs

Programs

Formula

Periodic of length 12: 0, 1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 1. - T. D. Noe, Dec 12 2006
From Michael Somos, Jun 11 2007: (Start)
Euler transform of length 12 sequence [0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 1].
a(n) is multiplicative with a(2^e) = a(3^e) = 0^e, a(p^e) = 1 if p == 1, 11 (mod 12), a(p^e) = (-1)^e if p == 5, 7 (mod 12).
a(n) = a(-n) = -a(n + 6) for all n in Z.
G.f.: x * (1 - x^4) * (1 - x^6) / (1 - x^12). (End)
a(2*n - 1) = A010892(n). - Michael Somos, Jan 29 2015
a(n) = A014021(n+1). - R. J. Mathar, Nov 13 2023

Extensions

Corrected by T. D. Noe, Dec 12 2006

A141430 a(n) = A000111(n) mod 9.

Original entry on oeis.org

1, 1, 1, 2, 5, 7, 7, 2, 8, 7, 4, 2, 2, 7, 1, 2, 5, 7, 7, 2, 8, 7, 4, 2, 2, 7, 1, 2, 5, 7, 7, 2, 8, 7, 4, 2, 2, 7, 1, 2, 5, 7, 7, 2, 8, 7, 4, 2, 2, 7
Offset: 0

Views

Author

Paul Curtz, Aug 06 2008

Keywords

Comments

After the initial 1,1, the sequence is periodic with period 12.
This sequence's periodic part is a shuffled version of the two period-6 sequences A070366 and A010697. The sequence contains only the digits 1, 2, 4, 5, 7 and 8 (those of A141425).

Crossrefs

Programs

  • Python
    def A141430(n): return (2, 7, 1, 2, 5, 7, 7, 2, 8, 7, 4, 2)[n%12] if n>1 else 1 # Chai Wah Wu, Apr 17 2023

Formula

a(n) = A000111(n) mod 9 = A004099(n) mod 9.
a(n+12) = a(n), n > 1.
a(n) + a(n+6) = 9, n > 1.
a(n+11-p) - a(n+p) = 6 (p=0 or 5), 0 (p=1 or 4), -3 (p=2 or 3), any n > 1.
G.f.: (6x^8-5x^7+x^6+2x^5+3x^4+x^3+1) / ((1-x)(x^2+1)(x^4-x^2+1)). - R. J. Mathar, Dec 05 2008
a(n) = 9/2 +(-1)^floor(n/2)*A010686(n)/2 - 3*A014021(n), n > 1. - R. J. Mathar, Dec 05 2008
a(n) = 9/2 - (3/2)*cos(Pi*n/6) + (1/2)*3^(1/2)*sin(Pi*n/6) - (1/2)*cos(Pi*n/2) - (5/2)*sin(Pi*n/2) - (3/2)*cos(5*Pi*n/6) - (1/2)*3^(1/2)*sin(5*Pi*n/6). - Richard Choulet, Dec 12 2008

Extensions

Edited by R. J. Mathar, Dec 05 2008

A124304 Riordan array (1, x*(1-x^2)).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, -1, 0, 1, 0, 0, -2, 0, 1, 0, 0, 0, -3, 0, 1, 0, 0, 1, 0, -4, 0, 1, 0, 0, 0, 3, 0, -5, 0, 1, 0, 0, 0, 0, 6, 0, -6, 0, 1, 0, 0, 0, -1, 0, 10, 0, -7, 0, 1, 0, 0, 0, 0, -4, 0, 15, 0, -8, 0, 1, 0, 0, 0, 0, 0, -10, 0, 21, 0, -9, 0, 1, 0, 0, 0, 0, 1, 0, -20, 0, 28, 0, -10, 0, 1
Offset: 0

Views

Author

Paul Barry, Oct 25 2006

Keywords

Comments

T(2n,n) is a signed aerated version of C(2n,n).
Inverse is A124305.

Examples

			Triangle begins
  1;
  0,  1;
  0,  0,  1;
  0, -1,  0,  1;
  0,  0, -2,  0,  1;
  0,  0,  0, -3,  0,  1;
  0,  0,  1,  0, -4,  0,  1;
  0,  0,  0,  3,  0, -5,  0,  1;
  0,  0,  0,  0,  6,  0, -6,  0,  1;
		

Crossrefs

Cf. A014021 (diagonal sums), A050935 (row sums), A124305 (inverse).

Programs

  • Magma
    A124304:= func< n,k | (&+[(-1)^j*Binomial(k,k-j)*Binomial(k,n-k-j) : j in [0..n]]) >;
    [A124304(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Aug 18 2023
    
  • Mathematica
    A124304[n_, k_]:= Binomial[k, (n-k)/2]*(-1)^((n-k)/2)*(1+(-1)^(n-k))/2;
    Table[A124304[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 18 2023 *)
  • SageMath
    def A124304(n, k): return binomial(k, (n-k)//2)*(-1)^((n-k)//2)*(1+(-1)^(n-k))/2
    flatten([[A124304(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Aug 18 2023

Formula

T(n, k) = Sum_{j=0..n} C(k,k-j)*C(k,n-k-j)*(-1)^j.
T(n, k) = C(k,(n-k)/2)*(-1)^((n-k)/2)*(1 + (-1)^(n-k))/2.
Sum_{k=0..n} T(n, k) = A050935(n+2).
Sum_{k=0..floor(n/2)} T(n-k, k) = A014021(n).
T(2*n, n) = (1 - 2*0^(n+2 mod 4))*A126869(n).
From G. C. Greubel, Aug 18 2023: (Start)
T(2*n-1, n-1) = (1 - 2*0^(n+1 mod 4))*A138364(n-1).
T(2*n-1, n+1) = (1 - 2*0^(n mod 4))*((1+(-1)^n)/2)*A002054(floor(n/2)).
Sum_{k=0..n} (-1)^k*T(n, k) = A176971(n+3).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (1 - 2*0^(n+2 mod 4))*A079977(n).
G.f.: 1/(1 - x*y*(1-x^2)). (End)

A156872 Period 12: 1,3,-1,3,1,0,-1,-3,1,-3,-1,0 repeated.

Original entry on oeis.org

1, 3, -1, 3, 1, 0, -1, -3, 1, -3, -1, 0, 1, 3, -1, 3, 1, 0, -1, -3, 1, -3, -1, 0, 1, 3, -1, 3, 1, 0, -1, -3, 1, -3, -1, 0, 1, 3, -1, 3, 1, 0, -1, -3, 1, -3, -1, 0, 1, 3, -1, 3, 1, 0, -1, -3, 1, -3, -1, 0
Offset: 0

Views

Author

Paul Curtz, Feb 17 2009

Keywords

Comments

First differences of A154811.

Programs

  • Mathematica
    PadRight[{},70,{1,3,-1,3,1,0,-1,-3,1,-3,-1,0}] (* Harvey P. Dale, Sep 23 2012 *)

Formula

Palindromic properties: a(n+6)= -a(n). a(12k+i)=a(12k+4-i), i=0..2. a(12k+5+i)=a(12k+11-i), i=0..3.
a(n) = A156194(n+1)-A156194(n+7) = A156194(n+1)-A156199(n+1).
a(n) = A156227(n+1) (mod 9).
a(n+1) -a(n)= A156346(n+1).
a(n)=A056594(n)+3*A014021(n-1). G.f.: (1+3*x-x^2+3*x^3+x^4)/((1+x^2)*(x^4-x^2+1)). - R. J. Mathar, Feb 23 2009

Extensions

Edited, formulas commenting other sequences removed, by R. J. Mathar, Feb 23 2009
Showing 1-4 of 4 results.