cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014126 Number of partitions of 2*n into at most 4 parts.

Original entry on oeis.org

1, 2, 5, 9, 15, 23, 34, 47, 64, 84, 108, 136, 169, 206, 249, 297, 351, 411, 478, 551, 632, 720, 816, 920, 1033, 1154, 1285, 1425, 1575, 1735, 1906, 2087, 2280, 2484, 2700, 2928, 3169, 3422, 3689, 3969, 4263, 4571, 4894, 5231, 5584, 5952, 6336, 6736, 7153, 7586
Offset: 0

Views

Author

Keywords

Comments

Bisection of A001400.
Molien series for 4-dimensional group of structure S_4 X C_2 and order 48, arising from complete weight enumerators of even trace-Hermitian self-dual additive codes over GF(4) containing the all-ones vector.
Partial sums of A156040. - Bob Selcoe, Feb 08 2014

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(combstruct): seq(count(Partition((2*n+4)), size=4), n=0..50); # Zerinvary Lajos, Mar 28 2008
  • Mathematica
    CoefficientList[Series[(1 + x^2) / ((1 - x)^2 (1 - x^2) (1 - x^3)), {x, 0, 100}], x] (* Vincenzo Librandi, Aug 15 2013 *)
    LinearRecurrence[{2,0,-1,-1,0,2,-1},{1,2,5,9,15,23,34},50] (* Harvey P. Dale, Aug 31 2015 *)
  • PARI
    a(n)=(4*n^3+30*n^2+72*n+55+8*[1,-1,0][(n%3)+1]+9*(-1)^n)/72

Formula

G.f.: (1+x^2)/((1-x)^2*(1-x^2)*(1-x^3)). - James Sellers
a(n) = (1/72) * (4*n^3 + 30*n^2 + 72*n + 55 + 8*A049347(n) + 9*(-1)^n ). - Ralf Stephan, Aug 15 2013
E.g.f.: exp(-x)*(27 + 3*exp(2*x)*(55 + 106*x + 42*x^2 + 4*x^3) + 8*exp(x/2)*(3*cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2)))/216. - Stefano Spezia, Apr 05 2023