A014132 Complement of triangular numbers (A000217); also array T(n,k) = ((n+k)^2 + n-k)/2, n, k > 0, read by antidiagonals.
2, 4, 5, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79
Offset: 1
Examples
From _Boris Putievskiy_, Jan 14 2013: (Start) Start of the sequence as a table (read by antidiagonals, right to left), where the k-th row corresponds to the k-th column of the triangle (shown thereafter): 2, 4, 7, 11, 16, 22, 29, ... 5, 8, 12, 17, 23, 30, 38, ... 9, 13, 18, 24, 31, 39, 48, ... 14, 19, 25, 32, 40, 49, 59, ... 20, 26, 33, 41, 50, 60, 71, ... 27, 34, 42, 51, 61, 72, 84, ... 35, 43, 52, 62, 73, 85, 98, ... (...) Start of the sequence as a triangle (read by rows), where the i elements of the i-th row are t(i) + 1 up to t(i+1) - 1, i >= 1: 2; 4, 5; 7, 8, 9; 11, 12, 13, 14; 16, 17, 18, 19, 20; 22, 23, 24, 25, 26, 27; 29, 30, 31, 32, 33, 34, 35; (...) Row number i contains i numbers, where t(i) = i*(i+1)/2: t(i) + 1, t(i) + 2, ..., t(i) + i = t(i+1) - 1 (End) [Edited by _Daniel Forgues_, Apr 11 2015]
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
- Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence arXiv:math/0305308 [math.NT], 2003.
- Bakir Farhi, An explicit formula generating the non-Fibonacci numbers, arXiv:1105.1127 [math.NT], May 05 2011. See Example 5 p. 456.
- J. Lambek and L. Moser, Inverse and complementary sequences of natural numbers, Amer. Math. Monthly, 61 (1954), 454-458.
- Cristinel Mortici, Remarks on Complementary Sequences, Fibonacci Quart. 48 (2010), no. 4, 343-347.
- Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
Crossrefs
Cf. A000217, A006002, A035214, A080036, A002024, A007401, A003057, A114327, A002260, A004736, A118011, A237593.
Cf. A000124 (left edge: quasi-triangular numbers), A000096 (right edge: almost-triangular numbers), A006002 (row sums), A001105 (central terms).
Cf. A242401 (subsequence).
Cf. A145397 (the non-tetrahedral numbers).
Programs
-
Haskell
a014132 n = n + round (sqrt $ 2 * fromInteger n) a014132_list = filter ((== 0) . a010054) [0..] -- Reinhard Zumkeller, Dec 12 2012
-
Magma
IsTriangular:=func< n | exists{ k: k in [1..Isqrt(2*n)] | n eq (k*(k+1) div 2)} >; [ n: n in [1..90] | not IsTriangular(n) ]; // Klaus Brockhaus, Jan 04 2011
-
Mathematica
f[n_] := n + Round[Sqrt[2n]]; Array[f, 71] (* or *) Complement[ Range[83], Array[ #(# + 1)/2 &, 13]] (* Robert G. Wilson v, Oct 21 2005 *) DeleteCases[Range[80],?(OddQ[Sqrt[8#+1]]&)] (* _Harvey P. Dale, Jul 24 2021 *)
-
PARI
a(n)=if(n<1,0,n+(sqrtint(8*n-7)+1)\2)
-
PARI
isok(n) = !ispolygonal(n,3); \\ Michel Marcus, Mar 01 2016
-
Python
from math import isqrt def A014132(n): return n+(isqrt((n<<3)-7)+1>>1) # Chai Wah Wu, Jun 17 2024
Formula
a(n) = n + round(sqrt(2*n)).
a(a(n)) = n + 2*floor(1/2 + sqrt(2n)) + 1.
a(n) = a(n-1) + A035214(n), a(1)=2.
a(n) = A080036(n) - 1.
a(n) = n + A002024(n). - Vincenzo Librandi, Jul 08 2010
A010054(a(n)) = 0. - Reinhard Zumkeller, Dec 10 2012
From Boris Putievskiy, Jan 14 2013: (Start)
a(n) = A007401(n)+1.
a(n) = ((t+2)^2 + i - j)/2, where
i = n-t*(t+1)/2,
j = (t*t+3*t+4)/2-n,
t = floor((-1+sqrt(8*n-7))/2). (End)
A248952(a(n)) < 0. - Reinhard Zumkeller, Oct 20 2014
From Robert Israel, Apr 20 2015 (Start):
a(n) = A118011(n) - n.
G.f.: x/(1-x)^2 + x/(1-x) * Sum(j>=0, x^(j*(j+1)/2)) = x/(1-x)^2 + x^(7/8)/(2-2*x) * Theta2(0,sqrt(x)), where Theta2 is a Jacobi theta function. (End)
G.f. as array: x*y*(2 - 2*y + x^2*y + y^2 - x*(1 + y))/((1 - x)^3*(1 - y)^3). - Stefano Spezia, Apr 22 2024
Extensions
Following Alford Arnold's comment: keyword tabl and correspondent crossrefs added by Reinhard Zumkeller, Dec 12 2012
I restored the original definition. - N. J. A. Sloane, Jan 27 2019
Comments