A014206 a(n) = n^2 + n + 2.
2, 4, 8, 14, 22, 32, 44, 58, 74, 92, 112, 134, 158, 184, 212, 242, 274, 308, 344, 382, 422, 464, 508, 554, 602, 652, 704, 758, 814, 872, 932, 994, 1058, 1124, 1192, 1262, 1334, 1408, 1484, 1562, 1642, 1724, 1808, 1894, 1982, 2072, 2164, 2258, 2354, 2452, 2552
Offset: 0
Examples
a(0) = 0^2 + 0 + 2 = 2. a(1) = 1^2 + 1 + 2 = 4. a(2) = 2^2 + 2 + 2 = 8. a(6) = 4*5/5 + 5*6/5 + 6*7/5 + 7*8/5 + 8*9/5 = 44. - _Bruno Berselli_, Oct 20 2016
References
- K. E. Batcher, Sorting Networks and their Applications. Proc. AFIPS Spring Joint Comput. Conf., Vol. 32, pp. 307-314 (1968). [for bitonic sequences]
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 3.
- T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms. MIT Press / McGraw-Hill (1990) [for bitonic sequences]
- Indiana School Mathematics Journal, vol. 14, no. 4, 1979, p. 4.
- D. E. Knuth, The Art of Computer Programming, vol3: Sorting and Searching, Addison-Wesley (1973) [for bitonic sequences]
- J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 177.
- Derrick Niederman, Number Freak, From 1 to 200 The Hidden Language of Numbers Revealed, A Perigee Book, NY, 2009, p. 83.
- A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #44 (First published: San Francisco: Holden-Day, Inc., 1964)
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..1000
- A. Burstein, S. Kitaev, and T. Mansour, Partially ordered patterns and their combinatorial interpretations, PU. M. A. Vol. 19 (2008), No. 2-3, pp. 27-38.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- S.-R. Kim and Y. Sano, The competition numbers of complete tripartite graphs, Discrete Appl. Math., 156 (2008) 3522-3524.
- Hans Werner Lang, Bitonic sequences.
- Daniel Q. Naiman and Edward R. Scheinerman, Arbitrage and Geometry, arXiv:1709.07446 [q-fin.MF], 2017.
- Jean-Christoph Novelli and Anne Schilling, The Forgotten Monoid, arXiv 0706.2996 [math.CO], 2007.
- Parabola, Problem #Q736, 24(1) (1988), p. 22.
- Franck Ramaharo, Enumerating the states of the twist knot, arXiv:1712.06543 [math.CO], 2017.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the two-bridge knot with Conway's notation C(n,r), arXiv:1902.08989 [math.CO], 2019.
- Yoshio Sano, The competition numbers of regular polyhedra, arXiv:0905.1763 [math.CO], 2009.
- Jeffrey Shallit, Recursivity: An Interesting but Little-Known Function, 2012. [Mentions this function in a blog post as the solution for small n to a problem involving Boolean matrices whose values for larger n are unknown.]
- Eric Weisstein's World of Mathematics, Plane Division by Circles.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[n^2+n+2: n in [0..50]]; // Vincenzo Librandi, Apr 29 2015
-
Maple
A014206 := n->n^2+n+2;
-
Mathematica
Table[n^2 + n + 2, {n, 0, 50}] (* Stefan Steinerberger, Apr 08 2006 *) LinearRecurrence[{3, -3, 1}, {2, 4, 8}, 50] (* Harvey P. Dale, May 14 2011 *) CoefficientList[Series[2 (x^2 - x + 1)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Apr 29 2015 *)
-
PARI
a(n)=n^2+n+2 \\ Charles R Greathouse IV, Jul 31 2011
-
PARI
x='x+O('x^100); Vec(2*x*(x^2-x+1)/(1-x)^3) \\ Altug Alkan, Nov 01 2015
Formula
G.f.: 2*(x^2 - x + 1)/(1 - x)^3.
n hyperspheres divide R^k into at most C(n-1, k) + Sum_{i = 0..k} C(n, i) regions.
a(n) = A002061(n+1) + 1 for n >= 0. - Rick L. Shepherd, May 30 2005
Equals binomial transform of [2, 2, 2, 0, 0, 0, ...]. - Gary W. Adamson, Jun 18 2008
a(n) = A003682(n+1), n > 0. - R. J. Mathar, Oct 28 2008
a(n) = a(n-1) + 2*n (with a(0) = 2). - Vincenzo Librandi, Nov 20 2010
a(0) = 2, a(1) = 4, a(2) = 8, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. - Harvey P. Dale, May 14 2011
a(n + 1) = n^2 + 3*n + 4. - Alonso del Arte, Apr 12 2015
a(n) = Sum_{i=n-2..n+2} i*(i + 1)/5. - Bruno Berselli, Oct 20 2016
Sum_{n>=0} 1/a(n) = Pi*tanh(Pi*sqrt(7)/2)/sqrt(7). - Amiram Eldar, Jan 09 2021
From Amiram Eldar, Jan 29 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = cosh(sqrt(11)*Pi/2)*sech(sqrt(7)*Pi/2).
Product_{n>=0} (1 - 1/a(n)) = cosh(sqrt(3)*Pi/2)*sech(sqrt(7)*Pi/2). (End)
a(n) = 2*A000124(n). - R. J. Mathar, Mar 14 2021
E.g.f.: exp(x)*(2 + 2*x + x^2). - Stefano Spezia, Apr 30 2022
Extensions
More terms from Stefan Steinerberger, Apr 08 2006
Comments