A014335 Exponential convolution of Fibonacci numbers with themselves (divided by 2).
0, 0, 1, 3, 11, 35, 115, 371, 1203, 3891, 12595, 40755, 131891, 426803, 1381171, 4469555, 14463795, 46805811, 151466803, 490156851, 1586180915, 5132989235, 16610702131, 53753361203, 173949530931, 562912506675, 1821623137075, 5894896300851, 19076285150003
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,2,-4).
Crossrefs
Programs
-
Magma
[(2^n*Lucas(n)-2)/10: n in [0..40]]; // G. C. Greubel, Jan 06 2023
-
Maple
a[0]:=0:a[1]:=0:for n from 2 to 50 do a[n]:=2*a[n-1]+4*a[n-2]+1 od: seq(a[n], n=0..29); # Zerinvary Lajos, Dec 14 2008 # second Maple program: a:= n-> (<<0|1|0>, <0|0|1>, <-4|2|3>>^n)[1,3]: seq(a(n), n=0..30); # Alois P. Heinz, Oct 04 2016
-
Mathematica
LinearRecurrence[{3,2,-4}, {0,0,1}, 41] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *) Table[(2^n LucasL[n] - 2)/10, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 06 2016 *)
-
SageMath
[(2^n*lucas_number2(n,1,-1) -2)/10 for n in range(41)] # G. C. Greubel, Jan 06 2023
Formula
a(n) = A014334(n)/2.
G.f.: x^2/((1-x)*(1-2*x-4*x^2)). - Vladeta Jovovic, Mar 05 2003
E.g.f.: exp(x)*(cosh(sqrt(5)*x)-1)/5. - Vladeta Jovovic, Sep 01 2004
From Benoit Cloitre, Sep 25 2004: (Start)
a(n+1) = Sum_{i=0..n} A000045(i)*2^(i-1).
a(n) = (1/5)*(2^(n-1)*A000032(n) - 1). (End)
a(n) = 2*a(n-1) + 4*a(n-2) + 1, a(0)=0; a(1)=0. - Zerinvary Lajos, Dec 14 2008
G.f.: G(0)*x^2/(2*(1-x)^2), where G(k)= 1 + 1/(1 - x*(5*k-1)/(x*(5*k+4) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
a(n) = (A203579(n) - 2)/5. - Vladimir Reshetnikov, Oct 06 2016
Comments