A014531 Form array in which n-th row is obtained by expanding (1+x+x^2)^n and taking the 2nd column from the center.
1, 3, 10, 30, 90, 266, 784, 2304, 6765, 19855, 58278, 171106, 502593, 1477035, 4343160, 12778152, 37616427, 110797569, 326527350, 962803170, 2840372304, 8383467708, 24755608584, 73133433800, 216143407675, 639062383401
Offset: 1
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000 (terms 1..200 from T. D. Noe)
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See pp. 21-22.
- Mark Shattuck, Subword Patterns in Smooth Words, Enum. Comb. Appl. (2024) Vol. 4, No. 4, Art. No. S2R32. See p. 6.
- Eric Weisstein's World of Mathematics, Trinomial Coefficient.
Programs
-
Maple
seq( add(binomial(i+1,k)*binomial(i-k+1,k+2), k=0..floor(i/2)), i=1..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 09 2001 a := n -> simplify(GegenbauerC(n-1, -n-1, -1/2)): seq(a(n), n=1..26); # Peter Luschny, May 09 2016
-
Mathematica
Table[Sum[Binomial[i + 1, k]*Binomial[i - k + 1, k + 2], {k, 0, Floor[i/2]}], {i, 30}] (* Michael De Vlieger, Apr 20 2015 *) Table[GegenbauerC[n - 1, -n - 1, -1/2], {n,1,50}] (* G. C. Greubel, Feb 28 2017 *)
-
PARI
for(n=1,25, print1(sum(k=0,n+1, binomial(n+1,k)*binomial(n-k+1,k+2)), ", ")) \\ G. C. Greubel, Feb 28 2017
-
Sage
a = lambda n: n*(n+1)*hypergeometric([(1-n)/2, 1-n/2], [3], 4)/2 [simplify(a(n)) for n in (1..26)] # Peter Luschny, Nov 23 2014
Formula
E.g.f.: exp(x)*(2*x*BesselI(1, 2*x)+(x-2)*BesselI(2, 2*x))/x. - Vladeta Jovovic, Aug 21 2003
G.f.: [1-2z-z^2-(1-z)q]/(2z^3q), where q=sqrt(1-2z-3z^2). - Emeric Deutsch, Dec 26 2003
a(n) = Sum_{k=0..n+1} C(n+1,k)*C(n-k+1,k+2). - Paul Barry, Sep 20 2004
D-finite with recurrence (n+3)*(n-1)*a(n) -(n+1)*(2n+1)*a(n-2)-3*n*(n+1)*a(n-2)=0. - R. J. Mathar, Dec 08 2011
a(n) = n*(n+1)*hypergeom([(1-n)/2, 1-n/2], [3], 4)/2. - Peter Luschny, Nov 23 2014
G.f.: z*M(z)^2/(1-z-2*z^2*M(z)), where M(z) is the g.f. of Motzkin paths. - José Luis Ramírez Ramírez, Apr 19 2015
a(n) = GegenbauerC(n-1, -n-1, -1/2). - Peter Luschny, May 09 2016
a(n) = Sum_{k>0} k * A055151(n+1,k). - Alois P. Heinz, Mar 29 2020
Extensions
More terms from James Sellers, Feb 05 2000
Comments