A014634 a(n) = (2*n+1)*(4*n+1).
1, 15, 45, 91, 153, 231, 325, 435, 561, 703, 861, 1035, 1225, 1431, 1653, 1891, 2145, 2415, 2701, 3003, 3321, 3655, 4005, 4371, 4753, 5151, 5565, 5995, 6441, 6903, 7381, 7875, 8385, 8911, 9453, 10011, 10585, 11175, 11781, 12403, 13041, 13695, 14365, 15051
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Kival Ngaokrajang, Illustration of initial terms.
- Leo Tavares, Illustration: Dual Square Stars
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[(2*n+1)*(4*n+1) : n in [0..50]]; // Wesley Ivan Hurt, Jul 09 2014
-
Maple
A014634:=n->(2*n+1)*(4*n+1); seq(A014634(k), k=0..100); # Wesley Ivan Hurt, Nov 04 2013
-
Mathematica
lst={};Do[a=(2*n+1)*(4*n+1);AppendTo[lst,a],{n,0,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 10 2009 *) Table[(2 n + 1) (4 n + 1), {n, 0, 50}] (* Wesley Ivan Hurt, Jul 09 2014 *) LinearRecurrence[{3,-3,1},{1,15,45},50] (* Harvey P. Dale, Aug 30 2021 *)
-
PARI
a(n)=(2*n+1)*(4*n+1) \\ Charles R Greathouse IV, Sep 24 2015
Formula
a(n) = A157870(n)/2. - Vladimir Joseph Stephan Orlovsky, Mar 10 2009
a(n) = a(n-1) + 16*n-2 (with a(0)=1). - Vincenzo Librandi, Nov 20 2010
G.f.: (1+12*x+3*x^2)/(1-x)^3. - Colin Barker, Jan 08 2012
E.g.f.: (8*x^2 +14*x + 1)*exp(x). - G. C. Greubel, Jul 18 2017
From Amiram Eldar, Feb 28 2022: (Start)
Sum_{n>=0} 1/a(n) = Pi/4 + log(2)/2.
Sum_{n>=0} (-1)^n/a(n) = Pi*(sqrt(2)-1)/4 + log(sqrt(2)+1)/sqrt(2). (End)
Extensions
More terms from Wesley Ivan Hurt, Jul 09 2014
Comments