cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014729 Squares of even Fibonacci numbers.

Original entry on oeis.org

0, 4, 64, 1156, 20736, 372100, 6677056, 119814916, 2149991424, 38580030724, 692290561600, 12422650078084, 222915410843904, 4000054745112196, 71778070001175616, 1288005205276048900, 23112315624967704576, 414733676044142633476, 7442093853169599697984
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A014445.

Programs

  • Magma
    [Fibonacci(3*n)^2: n in [0..20]]; // Vincenzo Librandi, Nov 19 2018
  • Mathematica
    (Table[Fibonacci@ n, {n, 0, 55}] /. n_ /; OddQ@ n -> Nothing)^2 (* or *)
    CoefficientList[Series[4 (-x^2 + x)/((1 + x) (1 - 18 x + x^2)), {x, 0, 18}], x] (* Michael De Vlieger, Mar 04 2016 *)
    LinearRecurrence[{17,17,-1},{0,4,64},20] (* Harvey P. Dale, Aug 02 2024 *)
  • MuPAD
    numlib::fibonacci(3*n)^2 $ n = 0..25; // Zerinvary Lajos, May 09 2008
    
  • PARI
    concat(0, Vec(4*x*(1-x)/((1+x)*(1-18*x+x^2)) + O(x^40))) \\ Colin Barker, Mar 04 2016
    
  • Sage
    [fibonacci(3*n)^2 for n in range(0, 17)] # Zerinvary Lajos, May 15 2009
    

Formula

a(n) = (1/5)*(Fibonacci(6*n+3) - 2*Fibonacci(6*n) - 2*(-1)^n). - Ralf Stephan, May 14 2004
G.f.: 4*(-x^2+x)/((1+x)*(1-18*x+x^2)). - Ralf Stephan, May 14 2004
a(n) = Fibonacci(3*n)^2. - Gary Detlefs, Nov 28 2010
a(n) = (-1)^(n+1)*(Fibonacci(n)*Fibonacci(7*n)-Fibonacci(4*n)^2). - Gary Detlefs, Nov 28 2010
a(n) = (-2*(-1)^n+(9+4*sqrt(5))^(-n)+(9+4*sqrt(5))^n)/5. - Colin Barker, Mar 04 2016
a(n) = A014445(n)^2. - Sean A. Irvine, Nov 18 2018

Extensions

More terms from James Sellers