A014752 Primes of the form x^2 + 27y^2.
31, 43, 109, 127, 157, 223, 229, 277, 283, 307, 397, 433, 439, 457, 499, 601, 643, 691, 727, 733, 739, 811, 919, 997, 1021, 1051, 1069, 1093, 1327, 1399, 1423, 1459, 1471, 1579, 1597, 1627, 1657, 1699, 1723, 1753, 1777, 1789, 1801, 1831, 1933, 1999, 2017
Offset: 1
Keywords
References
- K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer, 1982, Prop. 9.6.2, p. 119.
Links
- N. J. A. Sloane and T. D. Noe, Table of n, a(n) for n = 1..17753 (The first 1000 terms were computed by T. D. Noe)
- Steven R. Finch, Powers of Euler's q-Series, arXiv:math/0701251 [math.NT], 2007.
- Bishnu Paudel and Chris Pinner, The integer group determinants for the abelian groups of order 18, arXiv:2412.10638 [math.NT], 2024. See p. 3.
- Zak Seidov, Corresponding values of x and y
- Bram van Asch, On the structure of the ring Z[2^(1/3)], Internat. J. Pure Appl. Math., 16 (No. 2, 2004), 243-251. See Prop. 7.
Programs
-
Magma
[p: p in PrimesUpTo(2500) | NormEquation(27, p) eq true]; // Vincenzo Librandi, Jul 24 2016
-
Mathematica
With[{nn=50},Take[Select[Union[First[#]^2+27Last[#]^2&/@Tuples[Range[ nn], 2]],PrimeQ],nn]] (* Harvey P. Dale, Jul 28 2014 *) nn = 1398781;re = Sort[Reap[Do[Do[If[PrimeQ[p = x^2 + 27*y^2], Sow[{p, x, y}]], {x, Sqrt[nn - 27*y^2]}], {y, Sqrt[nn/27]}]][[2, 1]]]; (* For all 17753 values of a(n), x(n) and y(n). - Zak Seidov, May 20 2016 *)
-
PARI
{ fc(a,b,c,M) = my(p,t1,t2,n); t1 = listcreate(); for(n=1,M, p = prime(n); t2 = qfbsolve(Qfb(a,b,c),p); if(t2 == 0,, listput(t1,p))); print(t1); } fc(1,0,27,1000); \\ N. J. A. Sloane, Jun 06 2014
-
PARI
list(lim)=my(v=List()); forprimestep(p=31,lim,6, if(Mod(2,p)^(p\3)==1, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Apr 06 2022
Formula
a(n) ~ 6n log n by the Landau prime ideal theorem. - Charles R Greathouse IV, Apr 06 2022
Extensions
Definition provided by T. D. Noe, May 08 2005
Entry revised by Michael Somos and N. J. A. Sloane, Jul 28 2006
Defective Mma program replaced with PARI program, b-file recomputed and extended by N. J. A. Sloane, Jun 06 2014
Comments