cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014752 Primes of the form x^2 + 27y^2.

Original entry on oeis.org

31, 43, 109, 127, 157, 223, 229, 277, 283, 307, 397, 433, 439, 457, 499, 601, 643, 691, 727, 733, 739, 811, 919, 997, 1021, 1051, 1069, 1093, 1327, 1399, 1423, 1459, 1471, 1579, 1597, 1627, 1657, 1699, 1723, 1753, 1777, 1789, 1801, 1831, 1933, 1999, 2017
Offset: 1

Views

Author

Klaus Brockhaus, Mar 02 2001

Keywords

Comments

Primes p == 1 (mod 3) such that 2 is a cubic residue mod p.
Primes p == 1 (mod 6) such that 2 and -2 are both cubes (one implies the other) mod p. - Warren D. Smith
Subsequence of A040028, complement of A045309 relative to A040028. For p in this sequence, x^3 == 2 (mod p) has three solutions in integers from 0 to p-1, whose sum is p (A059899) or 2*p (A059914). The solutions are given in A060122, A060123 and A060124. - Klaus Brockhaus, Mar 02 2001
Primes p = 3m+1 such that 2^m == 1 (mod p). Subsequence of A016108 which also includes composites satisfying this congruence. - Alzhekeyev Ascar M, Feb 22 2012

References

  • K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer, 1982, Prop. 9.6.2, p. 119.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2500) | NormEquation(27, p) eq true]; // Vincenzo Librandi, Jul 24 2016
  • Mathematica
    With[{nn=50},Take[Select[Union[First[#]^2+27Last[#]^2&/@Tuples[Range[ nn], 2]],PrimeQ],nn]] (* Harvey P. Dale, Jul 28 2014 *)
    nn = 1398781;re = Sort[Reap[Do[Do[If[PrimeQ[p = x^2 + 27*y^2], Sow[{p, x, y}]], {x, Sqrt[nn - 27*y^2]}], {y, Sqrt[nn/27]}]][[2, 1]]]; (* For all 17753 values of a(n), x(n) and y(n). - Zak Seidov, May 20 2016 *)
  • PARI
    { fc(a,b,c,M) = my(p,t1,t2,n); t1 = listcreate();
    for(n=1,M, p = prime(n);
    t2 = qfbsolve(Qfb(a,b,c),p); if(t2 == 0,, listput(t1,p)));
    print(t1);
    }
    fc(1,0,27,1000);
    \\ N. J. A. Sloane, Jun 06 2014
    
  • PARI
    list(lim)=my(v=List()); forprimestep(p=31,lim,6, if(Mod(2,p)^(p\3)==1, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Apr 06 2022
    

Formula

a(n) ~ 6n log n by the Landau prime ideal theorem. - Charles R Greathouse IV, Apr 06 2022

Extensions

Definition provided by T. D. Noe, May 08 2005
Entry revised by Michael Somos and N. J. A. Sloane, Jul 28 2006
Defective Mma program replaced with PARI program, b-file recomputed and extended by N. J. A. Sloane, Jun 06 2014