cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A049077 a(n) = n / gcd(n, binomial(n, floor(n/2))).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 1, 1, 7, 1, 8, 1, 9, 1, 5, 1, 11, 1, 6, 1, 13, 1, 7, 1, 1, 1, 16, 1, 17, 1, 3, 1, 19, 1, 2, 1, 7, 1, 11, 1, 23, 1, 4, 1, 25, 1, 13, 1, 27, 1, 1, 1, 29, 1, 15, 1, 31, 1, 32, 1, 11, 1, 17, 1, 5, 1, 18, 1, 37, 1, 19, 1, 39, 1, 4, 1, 41, 1, 1, 1, 43, 1, 11, 1, 1, 1, 23
Offset: 1

Views

Author

Labos Elemer, Nov 13 2000

Keywords

Examples

			For n = 12, gcd(12, binomial(12, 6)) = gcd(12, 924) = 12, so a(12) = 1.
		

Crossrefs

Programs

  • Maple
    swing := n -> n!/iquo(n,2)!^2: seq(n/igcd(n,swing(n)),n=1..92); # Peter Luschny, May 16 2013
  • Mathematica
    Flatten[Table[{1, n/GCD[n, Binomial[n, n/2]]}, {n, 2, 100, 2}]] (* Alonso del Arte, May 17 2013 *)
  • PARI
    a(n) = n/gcd(n, binomial(n, n\2)); \\ Michel Marcus, Mar 22 2020

Formula

For odd n, a(n) = 1. For even n, a(n) is either n/2 or smaller.

Extensions

Offset changed to 1 by Peter Luschny, May 16 2013

A092043 a(n) = numerator(n!/n^2).

Original entry on oeis.org

1, 1, 2, 3, 24, 20, 720, 630, 4480, 36288, 3628800, 3326400, 479001600, 444787200, 5811886080, 81729648000, 20922789888000, 19760412672000, 6402373705728000, 6082255020441600, 115852476579840000, 2322315553259520000
Offset: 1

Views

Author

Ralf Stephan, Mar 28 2004

Keywords

Comments

Numerator of expansion of dilog(x) = Li_2(x) = -Integral_{t=0..x} (log(1-t)/t)*dt. See the Weisstein link.
E.g.f. of {a(n)/A014973(n)}_{n>=1} is Li_2(x) (with 0 for n=0).

Crossrefs

Denominator is in A014973.

Programs

  • Magma
    [Numerator(Factorial(n)/n^2): n in [1..30]]; // Vincenzo Librandi, Apr 15 2014
  • Mathematica
    Table[Numerator[n!/n^2], {n, 1, 40}] (* Vincenzo Librandi, Apr 15 2014 *)
    Table[(n-1)!/n,{n,30}]//Numerator (* Harvey P. Dale, Apr 03 2018 *)
  • PARI
    a(n)=numerator(n!/n^2)
    
  • PARI
    a(n)=numerator(polcoeff(serlaplace(dilog(x)),n))
    

Formula

From Wolfdieter Lang, Apr 28 2017: (Start)
a(n) = numerator(n!/n^2) = numerator((n-1)!/n), n >= 1. See the name.
E.g.f. {a(n)/A014973(n)}_{n>=1} with 0 for n=0 is Li_2(x). See the comment.
(-1)^n*a(n+1)/A014973(n+1) = (-1)^n*n!/(n+1) = Sum_{k=0..n} Stirling1(n, k)*Bernoulli(k), with Stirling1 = A048994 and Bernoulli(k) = A027641(k)/A027642(k), n >= 0. From inverting the formula for B(k) in terms of Stirling2 = A048993.(End)
From Wolfdieter Lang, Oct 26 2022: (Start)
a(n) = (n-1)!/gcd(n,(n-1)!) = A000142(n-1)/A181569(n-1), n >= 1.
The expansion of (1+x)*exp(x) has coefficients A014973(n+1)/a(n+1), for n >= 0. (End)

Extensions

Comment rewritten by Wolfdieter Lang, Apr 28 2017

A181569 Greatest common divisor of n! and n+1.

Original entry on oeis.org

1, 1, 2, 1, 6, 1, 8, 9, 10, 1, 12, 1, 14, 15, 16, 1, 18, 1, 20, 21, 22, 1, 24, 25, 26, 27, 28, 1, 30, 1, 32, 33, 34, 35, 36, 1, 38, 39, 40, 1, 42, 1, 44, 45, 46, 1, 48, 49, 50, 51, 52, 1, 54, 55, 56, 57, 58, 1, 60, 1, 62, 63, 64, 65, 66, 1, 68, 69, 70, 1, 72, 1, 74, 75, 76, 77, 78, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 31 2010

Keywords

Comments

From Wilson's theorem, it follows that a(n) = 1 when n + 1 is prime, a(n) > 1 otherwise. - Alonso del Arte, Feb 25 2014

Examples

			a(6) = 1 because 6! and 7 are coprime.
a(7) = 8 because 7! = 5040 and gcd(5040, 8) = 8.
a(8) = 9 because 8! = 40320 and gcd(40320, 9) = 9.
		

Crossrefs

Programs

Formula

a(n) = A050873(A000142(n), n + 1);
a(A006093(n)) = 1;
for n > 3: a(n) = (n + 1) / (n*A010051(n+1) + 1).
a(n) = (n+1)/A014973(n+1). - Michel Marcus, Aug 14 2015

A343206 Numerators of Daehee numbers.

Original entry on oeis.org

1, -1, 2, -3, 24, -20, 720, -630, 4480, -36288, 3628800, -3326400, 479001600, -444787200, 5811886080, -81729648000, 20922789888000, -19760412672000, 6402373705728000, -6082255020441600, 115852476579840000, -2322315553259520000, 1124000727777607680000, -1077167364120207360000
Offset: 0

Views

Author

Michel Marcus, Apr 08 2021

Keywords

Examples

			1, -1/2, 2/3, -3/2, 24/5, -20, 720/7, -630, 4480, -36288, 3628800/11, -3326400, 479001600/13, -444787200, ...
		

Crossrefs

Cf. A008275 (Stirling1), A027641/A027642 (Bernoulli).
Cf. A014973 (denominators).

Programs

  • Mathematica
    a[n_]:=Numerator[(-1)^n*n!/(n+1)]; Array[a,24,0] (* Stefano Spezia, Jun 24 2024 *)
  • PARI
    a(n) = numerator(sum(i=0, n, stirling(n, i, 1)*bernfrac(i)));
    
  • PARI
    my(x='x+O('x^30), v=Vec(serlaplace(log(1+x)/x))); apply(numerator,v)
    
  • Python
    from sympy.functions.combinatorial.numbers import stirling, bernoulli
    def A343206(n): return sum(stirling(n,i,signed=True)*bernoulli(i) for i in range(n+1)).p # Chai Wah Wu, Apr 08 2021

Formula

D(n) = Sum_{i=0..n} Stirling1(n, i)*Bernoulli(i).
E.g.f. for D(n): log(1+x)/x.
D(n) = a(n)/A014973(n+1).
a(n) = numerator((-1)^n*n!/(n+1)). - Stefano Spezia, Jun 24 2024

A181857 a(n) = lcm(n^2, n!).

Original entry on oeis.org

0, 1, 4, 18, 48, 600, 720, 35280, 40320, 362880, 3628800, 439084800, 479001600, 80951270400, 87178291200, 1307674368000, 20922789888000, 6046686277632000, 6402373705728000, 2311256907767808000, 2432902008176640000, 51090942171709440000, 1124000727777607680000
Offset: 0

Views

Author

Peter Luschny, Nov 21 2010

Keywords

Comments

If n > 4 then a(n) = n! for composite n and n * n! for prime n. - David A. Corneth, Aug 04 2015

Crossrefs

Programs

Formula

a(n) = lcm(A000290(n), A000142(n)).
a(n) = n! * A014973(n) for n >= 1. - Johannes W. Meijer, Jun 04 2016

A160039 Numerators of n!*(1 + 1/2 + 1/3 +...+ 1/(n+1)).

Original entry on oeis.org

1, 3, 11, 25, 274, 294, 13068, 13698, 114064, 1062864, 120543840, 123870240, 19802759040, 20247546240, 289277533440, 4420892649600, 1223405590579200, 1243166003251200, 431565146817638400, 437647401838080000
Offset: 0

Views

Author

Peter Luschny, Apr 30 2009

Keywords

Comments

The denominators of n!*(1 + 1/2 + 1/3 +...+ 1/(n+1)) are A014973 with offset 0.

Crossrefs

Cf. A014973 (denominators).

Programs

  • Maple
    FH := n -> numer(n!*add(1/i,i=1..n+1)); seq(FH(i),i=0..20);
  • Mathematica
    Table[Numerator[n! HarmonicNumber[n+1]], {n, 0, 19}] (* Jean-François Alcover, Jun 17 2019 *)

A240533 a(n) = numerators of n!/10^n.

Original entry on oeis.org

1, 1, 1, 3, 3, 3, 9, 63, 63, 567, 567, 6237, 18711, 243243, 1702701, 5108103, 5108103, 86837751, 781539759, 14849255421, 14849255421, 311834363841, 3430178002251, 78894094051773, 236682282155319, 236682282155319, 3076869668019147, 83075481036516969
Offset: 0

Views

Author

Vincenzo Librandi, Apr 14 2014

Keywords

Crossrefs

Programs

  • Magma
    [Numerator(Factorial(n)/10^n): n in [0..30]];
  • Mathematica
    Table[Numerator[n!/10^n], {n, 0, 30}]

A240534 a(n) = denominators of n!/10^n.

Original entry on oeis.org

1, 10, 50, 500, 1250, 2500, 12500, 125000, 156250, 1562500, 1562500, 15625000, 39062500, 390625000, 1953125000, 3906250000, 2441406250, 24414062500, 122070312500, 1220703125000, 610351562500, 6103515625000, 30517578125000
Offset: 0

Views

Author

Vincenzo Librandi, Apr 14 2014

Keywords

Crossrefs

Programs

  • Magma
    [Denominator(Factorial(n)/10^n): n in [0..30]];
  • Mathematica
    Table[Denominator[n!/10^n], {n, 0, 30}]

A344849 a(n) is the numerator of Catalan-Daehee number d(n).

Original entry on oeis.org

1, 1, 7, 20, 313, 344, 24634, 86008, 183349, 3301264, 132174038, 69326344, 3332927794, 17361255440, 108222173516, 406589577424, 26070625295573, 8970328188896, 55462481190898, 1055714050810664, 2169454884422962, 91277283963562352, 8046203518285051612, 686567135431420560
Offset: 0

Views

Author

Stefano Spezia, May 30 2021

Keywords

Crossrefs

Cf. A000108, A000302, A014973 (denominators of Daehee numbers), A343206, A344850 (denominators).

Programs

  • Mathematica
    nmax:=24; a[n_]:=Numerator[Coefficient[Series[Log[1-4x]/(2(Sqrt[1-4x]-1)),{x,0,nmax}],x,n]]; Array[a,nmax,0] (* or *)
    a[n_]:=Numerator[If[n==0,1,4^n/(n+1)-Sum[4^(n-m-1)CatalanNumber[m]/(n-m),{m,0,n-1}]]]; Array[a,24,0]

Formula

G.f. of d(n): log(1 - 4*x)/(2*(sqrt(1 - 4*x) - 1)).
a(n) = numerator(d(n)), where d(n) = 4^n/(n + 1) - Sum_{m=0..n-1} 4^(n-m-1)*C(m)/(n - m) with d(0) = 1 and C(m) is the m-th Catalan number.

A344850 a(n) is the denominator of Catalan-Daehee number d(n).

Original entry on oeis.org

1, 1, 3, 3, 15, 5, 105, 105, 63, 315, 3465, 495, 6435, 9009, 15015, 15015, 255255, 23205, 37791, 188955, 101745, 1119195, 25741485, 572033, 42902475, 79676025, 42181425, 42181425, 155687805, 40970475, 1270084725, 1270084725, 665282475, 173996955, 6089893425, 794333925
Offset: 0

Views

Author

Stefano Spezia, May 30 2021

Keywords

Crossrefs

Cf. A000108, A000302, A014973 (denominators of Daehee numbers), A343206, A344849 (numerators).

Programs

  • Mathematica
    nmax:=36; a[n_]:=Denominator[Coefficient[Series[Log[1-4x]/(2(Sqrt[1-4x]-1)),{x,0,nmax}],x,n]]; Array[a,nmax,0] (* or *)
    a[n_]:=Denominator[If[n==0,1,4^n/(n+1)-Sum[4^(n-m-1)CatalanNumber[m]/(n-m),{m,0,n-1}]]]; Array[a,36,0]

Formula

G.f. of d(n): log(1 - 4*x)/(2*(sqrt(1 - 4*x) - 1)).
a(n) = denominator(d(n)), where d(n) = 4^n/(n + 1) - Sum_{m=0..n-1} 4^(n-m-1)*C(m)/(n - m) with d(0) = 1 and C(m) the m-th Catalan number.
Showing 1-10 of 13 results. Next