A015128 Number of overpartitions of n: an overpartition of n is an ordered sequence of nonincreasing integers that sum to n, where the first occurrence of each integer may be overlined.
1, 2, 4, 8, 14, 24, 40, 64, 100, 154, 232, 344, 504, 728, 1040, 1472, 2062, 2864, 3948, 5400, 7336, 9904, 13288, 17728, 23528, 31066, 40824, 53408, 69568, 90248, 116624, 150144, 192612, 246256, 313808, 398640, 504886, 637592, 802936, 1008448
Offset: 0
Examples
G.f. = 1 + 2*q + 4*q^2 + 8*q^3 + 14*q^4 + 24*q^5 + 40*q^6 + 64*q^7 + 100*q^8 + ... For n = 4 the 14 overpartitions of 4 are [4], [4'], [2, 2], [2', 2], [3, 1], [3', 1], [3, 1'], [3', 1'], [2, 1, 1], [2', 1, 1], [2, 1', 1], [2', 1', 1], [1, 1, 1, 1], [1', 1, 1, 1]. - _Omar E. Pol_, Jan 19 2014
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 103.
- R. W. Gosper, Experiments and discoveries in q-trigonometry, in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics. Editors: F. G. Garvan and M. E. H. Ismail. Kluwer, Dordrecht, Netherlands, 2001, pp. 79-105. See the function g(q).
- James R. Newman, The World of Mathematics, Simon and Schuster, 1956, Vol. I p. 372.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (first 1000 terms from T. D. Noe)
- Gert Almkvist, Asymptotic formulas and generalized Dedekind sums, Exper. Math., 7 (No. 4, 1998), pp. 343-359.
- Brennan Benfield and Arindam Roy, Log-concavity And The Multiplicative Properties of Restricted Partition Functions, arXiv:2404.03153 [math.NT], 2024.
- Noureddine Chair, Partition identities from Partial Supersymmetry, arXiv:hep-th/0409011, 2004.
- Shi-Chao Chen, On the number of overpartitions into odd parts, Discrete Math. 325 (2014), 32--37. MR3181230.
- William Y.C. Chen and Ernest X.W. Xia, Proof of a conjecture of Hirschhorn and Sellers on overpartitions, arXiv:1307.4155 [math.CO], 2013; Acta Arith. 163 (2014), no. 1, 59--69. MR3194057
- Sylvie Corteel, Particle seas and basic hypergeometric series, Advances Appl. Math., 31 (2003), 199-214.
- Sylvie Corteel and Jeremy Lovejoy, Frobenius partitions and the combinatorics of Ramanujan's 1 psi 1 summation, J. Combin. Theory A 97 (2002), 177-183.
- Sylvie Corteel and Jeremy Lovejoy, Overpartitions, Trans. Amer. Math. Soc., 356 (2004), 1623-1635.
- Brian Drake, Limits of areas under lattice paths, Discrete Math. 309 (2009), no. 12, 3936-3953.
- Benjamin Engel, Log-concavity of the overpartition function, The Ramanujan Journal, Vol. 43, No. 2 (2017), pp. 229-241; arXiv preprint, arXiv:1412.4603 [math.NT], 2014.
- Alex Fink, Richard K. Guy and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008).
- J.-F. Fortin, P. Jacob and P. Mathieu, Jagged partitions, The Ramanujan Journal, Vol. 10, No. 2 (2005), pp. 215-235; arXiv preprint, arXiv:math/0310079 [math.CO], 2003-2005.
- Frank Garvan, Table of a(n) for n = 1..10000.
- R. W. Gosper, Experiments and discoveries in q-trigonometry, in F. G. Garvan and M. E. H. Ismail (eds.), Symbolic computation, number theory, special functions, physics and combinatorics, Springer, Boston, MA, 2001, pp. 79-105; preprint.
- R. W. Gosper, q-Trigonometry: Some Prefatory Afterthoughts
- William J. Keith, Restricted k-color partitions, The Ramanujan Journal, Vol. 40, No. 1 (2016), pp. 71-92; arXiv preprint, arXiv:1408.4089 [math.CO], 2014.
- Byungchan Kim, A short note on the overpartition function, Discr. Math., 309 (2009), 2528-2532.
- Byungchan Kim, Overpartition pairs modulo powers of 2, Discrete Math., 311 (2011), 835-840.
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], 2015-2016.
- Jeremy Lovejoy, Gordon's theorem for overpartitions, J. Combin. Theory A 103 (2003), 393-401.
- Karl Mahlburg, The overpartition function modulo small powers of 2, Discr. Math., 286 (2004), 263-267.
- Mircea Merca, Overpartitions in terms of 2-adic valuation, Aequat. Math. (2024). See p. 9.
- Igor Pak, Partition bijections, a survey, The Ramanujan Journal, Vol. 12, No. 1 (2006), pp. 5-75; alternative link.
- Maxie D. Schmidt, Exact Formulas for the Generalized Sum-of-Divisors Functions, arXiv:1705.03488 [math.NT], 2017-2019. See Example 4.1, p. 13.
- Michael Somos, Introduction to Ramanujan theta functions
- Liuquan Wang, Another Proof of a Conjecture by Hirschhorn and Sellers on Overpartitions, J. Int. Seq. 17 (2014) # 14.9.8.
- Eric Weisstein's World of Mathematics, Modular Equation.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
- Michael P. Zaletel and Roger S. K. Mong, Exact matrix product states for quantum Hall wave functions, Physical Review B, Vol. 86, No. 24 (2012), 245305; arXiv preprint, arXiv:1208.4862 [cond-mat.str-el], 2012. - From _N. J. A. Sloane_, Dec 25 2012
Crossrefs
Programs
-
Julia
# JacobiTheta4 is defined in A002448. A015128List(len) = JacobiTheta4(len, -1) A015128List(40) |> println # Peter Luschny, Mar 12 2018
-
Maple
mul((1+x^n)/(1-x^n),n=1..256): seq(coeff(series(%,x,n+1),x,n), n=0..40); # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1) +2*add(b(n-i*j, i-1), j=1..n/i))) end: a:= n-> b(n$2): seq(a(n), n=0..40); # Alois P. Heinz, Feb 10 2014 a_list := proc(len) series(1/JacobiTheta4(0,x),x,len+1); seq(coeff(%,x,j),j=0..len) end: a_list(39); # Peter Luschny, Mar 14 2017
-
Mathematica
max = 39; f[x_] := Exp[Sum[(DivisorSigma[1, 2*n] - DivisorSigma[1, n])*(x^n/n), {n, 1, max}]]; CoefficientList[ Series[f[x], {x, 0, max}], x] (* Jean-François Alcover, Jun 11 2012, after Joerg Arndt *) a[ n_] := SeriesCoefficient[ QHypergeometricPFQ[ {-1}, {}, x, x], {x, 0, n}]; (* Michael Somos, Mar 11 2014 *) QP = QPochhammer; s = QP[q^2]/QP[q]^2 + O[q]^40; CoefficientList[s + O[q]^100, q] (* Jean-François Alcover, Nov 25 2015, after Michael Somos *) Table[Sum[PartitionsP[n-k]*PartitionsQ[k], {k, 0, n}], {n, 0, 50}] (* Vaclav Kotesovec, Nov 28 2015 *) (QPochhammer[-x, x]/QPochhammer[x, x] + O[x]^50)[[3]] (* Vladimir Reshetnikov, Nov 12 2016 *) nmax = 100; p = ConstantArray[0, nmax+1]; p[[1]] = 1; Do[p[[n+1]] = 0; k = 1; While[n + 1 - k^2 > 0, p[[n+1]] += (-1)^(k+1)*p[[n + 1 - k^2]]; k++;]; p[[n+1]] = 2*p[[n+1]];, {n, 1, nmax}]; p (* Vaclav Kotesovec, Apr 11 2017 *) a[ n_] := SeriesCoefficient[ 1 / EllipticTheta[ 4, 0, x], {x, 0, n}]; (* Michael Somos, Nov 15 2018 *) a[n_] := Sum[2^Length[Union[IntegerPartitions[n][[i]]]], {i, 1, PartitionsP[n]}]; (* Richard Joseph Boland, Sep 02 2021 *) n = 39; CoefficientList[Product[(1 + x^k)/(1 - x^k), {k, 1, n}] + O[x]^(n + 1), x] (* Oliver Seipel, Sep 19 2021 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) / eta(x + A)^2, n))}; /* Michael Somos, Nov 01 2008 */
-
PARI
{a(n)=polcoeff(exp(sum(m=1,n\2+1,2*x^(2*m-1)/(1-x^(2*m-1)+x*O(x^n))/(2*m-1))),n)} /* Paul D. Hanna, Aug 06 2009 */
-
PARI
N=66; x='x+O('x^N); gf=exp(sum(n=1,N,(sigma(2*n)-sigma(n))*x^n/n));Vec(gf) /* Joerg Arndt, Jul 30 2011 */
-
PARI
lista(nn) = {q='q+O('q^nn); Vec(eta(q^2)/eta(q)^2)} \\ Altug Alkan, Mar 20 2018
-
SageMath
# uses[EulerTransform from A166861] a = BinaryRecurrenceSequence(0, 1, 1, 2) b = EulerTransform(a) print([b(n) for n in range(40)]) # Peter Luschny, Nov 11 2020
Formula
Euler transform of period 2 sequence [2, 1, ...]. - Michael Somos, Mar 17 2003
G.f.: Product_{m>=1} (1 + q^m)/(1 - q^m).
G.f.: 1 / (Sum_{m=-inf..inf} (-q)^(m^2)) = 1/theta_4(q).
G.f.: 1 / Product_{m>=1} (1 - q^(2*m)) * (1 - q^(2*m-1))^2.
G.f.: exp( Sum_{n>=1} 2*x^(2*n-1)/(1 - x^(2*n-1))/(2*n-1) ). - Paul D. Hanna, Aug 06 2009
G.f.: exp( Sum_{n>=1} (sigma(2*n) - sigma(n))*x^n/n ). - Joerg Arndt, Jul 30 2011
G.f.: Product_{n>=0} theta_3(q^(2^n))^(2^n). - Joerg Arndt, Aug 03 2011
A004402(n) = (-1)^n * a(n). - Michael Somos, Mar 17 2003
Expansion of eta(q^2) / eta(q)^2 in powers of q. - Michael Somos, Nov 01 2008
Expansion of 1 / phi(-q) in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Nov 01 2008
Convolution inverse of A002448. - Michael Somos, Nov 01 2008
Recurrence: a(n) = 2*Sum_{m>=1} (-1)^(m+1) * a(n-m^2).
a(n) = (1/n)*Sum_{k=1..n} (sigma(2*k) - sigma(k))*a(n-k). - Vladeta Jovovic, Dec 05 2004
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = w^4 * (u^4 + v^4) - 2 * u^2 * v^6. - Michael Somos, Nov 01 2008
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u6^3 * (u1^2 + u3^2) - 2 * u1 * u2 * u3^3. - Michael Somos, Nov 01 2008
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u2^3 * (u3^2 - 3 * u1^2) + 2 * u1^3 * u3 * u6. - Michael Somos, Nov 01 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 32^(-1/2) (t/i)^(-1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A106507. - Michael Somos, Nov 01 2008
a(n) = 2*A014968(n), n >= 1. - Omar E. Pol, Jan 19 2014
a(n) ~ Pi * BesselI(3/2, Pi*sqrt(n)) / (4*sqrt(2)*n^(3/4)). - Vaclav Kotesovec, Jan 11 2017
Let T(n,k) = the number of partitions of n with parts 1 through k of two kinds, T(n,0) = A000041(n), the number of partitions of n. Then a(n) = T(n,0) + T(n-1,1) + T(n-3,2) + T(n-6,3) + T(n-10,4) + T(n-15,5) + ... . Gregory L. Simay, May 29 2019
For n >= 1, a(n) = Sum_{k>=1} 2^k * A116608(n,k). - Gregory L. Simay, Jun 01 2019
Sum_{n>=1} 1/a(n) = A303662. - Amiram Eldar, Nov 15 2020
a(n) = Sum_{i=1..p(n)} 2^(d(n,i)), where d(n,i) is the number of distinct parts in the i-th partition of n. - Richard Joseph Boland, Sep 02 2021
G.f.: A(x) = exp( Sum_{n >= 1} x^n*(2 + x^n)/(n*(1 - x^(2*n))) ). - Peter Bala, Dec 23 2021
G.f. A(q) satisfies (3*A(q)/A(q^9) - 1)^3 = 9*A(q)^4/A(q^3)^4 - 1. - Paul D. Hanna, Oct 14 2024
Extensions
Minor edits by Vaclav Kotesovec, Sep 13 2014
Comments