cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015219 Odd tetrahedral numbers: a(n) = (4*n+1)*(4*n+2)*(4*n+3)/6.

Original entry on oeis.org

1, 35, 165, 455, 969, 1771, 2925, 4495, 6545, 9139, 12341, 16215, 20825, 26235, 32509, 39711, 47905, 57155, 67525, 79079, 91881, 105995, 121485, 138415, 156849, 176851, 198485, 221815, 246905, 273819, 302621, 333375, 366145, 400995, 437989, 477191, 518665
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(4*n+1)*(4*n+2)*(4*n+3)/6: n in [0..40]]; // Vincenzo Librandi, Jan 25 2016
  • Mathematica
    LinearRecurrence[{4, -6, 4, -1}, {1, 35, 165, 455}, 35] (* Ant King, Oct 19 2012 *)
    Table[(4 n + 1) (4 n + 2) (4 n + 3)/6, {n, 0, 40}] (* Vincenzo Librandi, Jan 25 2016 *)
  • PARI
    a(n)=binomial(4*n+3,3) \\ Charles R Greathouse IV, Jan 16 2013
    

Formula

From Jaume Oliver Lafont, Oct 20 2009: (Start)
G.f.: (1+x)*(1+30*x+x^2)/(1-x)^4.
Sum_{n>=0} 1/a(n) = (3/2)*log(2). (End)
From Ant King, Oct 19 2012: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 64 + 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
a(n) = A000292(4*n+1). - L. Edson Jeffery, Jan 16 2013
a(n) = A000447(2*n+1). - Michel Marcus, Jan 25 2016
Sum_{n>=0} (-1)^n/a(n) = 3*(sqrt(2)-1)*Pi/4. - Amiram Eldar, Jan 04 2022
a(n) = A001505(n)/6. - R. J. Mathar, Apr 17 2024
E.g.f.: exp(x)*(3 + 102*x + 144*x^2 + 32*x^3)/3. - Elmo R. Oliveira, Aug 15 2025

Extensions

More terms from Erich Friedman