cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A203778 a(n) = -24*A015219(n-2)*a(n-1), with a(1) = 2.

Original entry on oeis.org

2, -48, 40320, -159667200, 1743565824000, -40548366802944000, 1723467782592331776000, -120987438337981690675200000, 13052124847901464790040576000000, -2050227771108362089219573678080000000, 449688758403823707201064412255354880000000
Offset: 1

Views

Author

John M. Campbell, Jan 05 2012

Keywords

Comments

Sums of coefficients from (4n)th moments of binomial(m,k)*binomial(3*m,k): see Maple code below.

Examples

			The evaluation of sum(binomial(n,k)*binomial(3*n,k)*k^8,k=0..n) involves the polynomial 729*n^13+729*n^12-12879*n^11+9801*n^10+50247*n^9-84825*n^8-105*n^7+74167*n^6-36968*n^5-2296*n^4+1472*n^3-120*n^2, the sum of the coefficients of which is a(2)=-48.
		

Crossrefs

Programs

  • Maple
    with(PolynomialTools);polyn:=q->expand(simplify((1/(GAMMA(n-((2*floor((q+1)/4)-1))/(2))))*(1/sqrt(3))*GAMMA(n+1/3)*GAMMA(n+2/3)*(1/3)*(1/(27^(-n)))*GAMMA(n)*1/64^n*sum(binomial(n,k)*binomial(3*n,k)*k^q,k=0..n)*(1/(GAMMA(2*n-((2*floor(q/2)-1)/(2)))))*(2^((floor((1/2)*q+1/2)-1)+q))));coefl:=h->CoefficientList(expand(polyn(h)),n);coe:=(d,b)->coefl(d)[b];seq(sum(coe((4*g),a),a=1..(2*(4*g)-floor(((4*g)+3)/4))),g=1..6);seq(simplify(-(1/32)*GAMMA(2*n-3/2)*GAMMA(n-1/2)*(-1)^n*64^n/Pi),n=1..6);

Formula

a(n) = -(1/32)*Gamma(2*n-3/2)*Gamma(n-1/2)*(-1)^n*64^n/Pi.

A000447 a(n) = 1^2 + 3^2 + 5^2 + 7^2 + ... + (2*n-1)^2 = n*(4*n^2 - 1)/3.

Original entry on oeis.org

0, 1, 10, 35, 84, 165, 286, 455, 680, 969, 1330, 1771, 2300, 2925, 3654, 4495, 5456, 6545, 7770, 9139, 10660, 12341, 14190, 16215, 18424, 20825, 23426, 26235, 29260, 32509, 35990, 39711, 43680, 47905, 52394, 57155, 62196, 67525, 73150, 79079, 85320, 91881, 98770, 105995, 113564, 121485
Offset: 0

Views

Author

Keywords

Comments

4 times the variance of the area under an n-step random walk: e.g., with three steps, the area can be 9/2, 7/2, 3/2, 1/2, -1/2, -3/2, -7/2, or -9/2 each with probability 1/8, giving a variance of 35/4 or a(3)/4. - Henry Bottomley, Jul 14 2003
Number of standard tableaux of shape (2n-1,1,1,1) (n>=1). - Emeric Deutsch, May 30 2004
Also a(n) = (1/6)*(8*n^3-2*n), n>0: structured octagonal diamond numbers (vertex structure 9). Cf. A059722 = alternate vertex; A000447 = structured diamonds; and structured tetragonal anti-diamond numbers (vertex structure 9). Cf. A096000 = alternate vertex; A100188 = structured anti-diamonds. Cf. A100145 for more on structured numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
The n-th tetrahedral (or pyramidal) number is n(n+1)(n+2)/6. This sequence contains the tetrahedral numbers of A000292 obtained for n= 1,3,5,7,... (see A015219). - Valentin Bakoev, Mar 03 2009
Using three consecutive numbers u, v, w, (u+v+w)^3-(u^3+v^3+w^3) equals 18 times the numbers in this sequence. - J. M. Bergot, Aug 24 2011
This sequence is related to A070893 by A070893(2*n-1) = n*a(n)-sum(i=0..n-1, a(i)). - Bruno Berselli, Aug 26 2011
Number of integer solutions to 1-n <= x <= y <= z <= n-1. - Michael Somos, Dec 27 2011
Partial sums of A016754. - Reinhard Zumkeller, Apr 02 2012
Also the number of cubes in the n-th Haüy square pyramid. - Eric W. Weisstein, Sep 27 2017

Examples

			G.f. = x + 10*x^2 + 35*x^3 + 84*x^4 + 165*x^5 + 286*x^6 + 455*x^7 + 680*x^8 + ...
a(2) = 10 since (-1, -1, -1), (-1, -1, 0), (-1, -1, 1), (-1, 0, 0), (-1, 0, 1), (-1, 1, 1), (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1) are the 10 solutions (x, y, z) of -1 <= x <= y <= z <= 1.
a(0) = 0, which corresponds to the empty sum.
		

References

  • G. Chrystal, Textbook of Algebra, Vol. 1, A. & C. Black, 1886, Chap. XX, Sect. 10, Example 2.
  • F. E. Croxton and D. J. Cowden, Applied General Statistics. 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1955, p. 742.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
  • C. V. Durell, Advanced Algebra, Volume 1, G. Bell & Son, 1932, Exercise IIIe, No. 4.
  • L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 7.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.
Column 1 in triangles A008956 and A008958.
A000447 is related to partitions of 2^n into powers of 2, as it is shown in the formula, example and cross-references of A002577. - Valentin Bakoev, Mar 03 2009

Programs

Formula

a(n) = binomial(2*n+1, 3) = A000292(2*n-1).
G.f.: x*(1+6*x+x^2)/(1-x)^4.
a(n) = -a(-n) for all n in Z.
a(n) = A000330(2*n)-4*A000330(n) = A000466(n)*n/3 = A000578(n)+A007290(n-2) = A000583(n)-2*A024196(n-1) = A035328(n)/3. - Henry Bottomley, Jul 14 2003
a(n+1) = (2*n+1)*(2*n+2)(2*n+3)/6. - Valentin Bakoev, Mar 03 2009
a(0)=0, a(1)=1, a(2)=10, a(3)=35, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, May 25 2012
a(n) = v(n,n-1), where v(n,k) is the central factorial numbers of the first kind with odd indices. - Mircea Merca, Jan 25 2014
a(n) = A005917(n+1) - A100157(n+1), where A005917 are the rhombic dodecahedral numbers and A100157 are the structured rhombic dodecahedral numbers (vertex structure 9). - Peter M. Chema, Jan 09 2016
For any nonnegative integers m and n, 8*(n^3)*a(m) + 2*m*a(n) = a(2*m*n). - Ivan N. Ianakiev, Mar 04 2017
E.g.f.: exp(x)*x*(1 + 4*x + (4/3)*x^2). - Wolfdieter Lang, Mar 11 2017
a(n) = A002412(n) + A016061(n-1), for n>0. - Bruce J. Nicholson, Nov 12 2017
From Amiram Eldar, Jan 04 2022: (Start)
Sum_{n>=1} 1/a(n) = 6*log(2) - 3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3 - 3*log(2). (End)

Extensions

Chrystal and Durell references from R. K. Guy, Apr 02 2004

A060543 Triangle, read by antidiagonals, where T(n,k) = C(n+n*k+k, n*k+k).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 10, 5, 1, 1, 35, 28, 7, 1, 1, 126, 165, 55, 9, 1, 1, 462, 1001, 455, 91, 11, 1, 1, 1716, 6188, 3876, 969, 136, 13, 1, 1, 6435, 38760, 33649, 10626, 1771, 190, 15, 1, 1, 24310, 245157, 296010, 118755, 23751, 2925, 253, 17, 1, 1, 92378, 1562275
Offset: 0

Views

Author

Henry Bottomley, Apr 02 2001

Keywords

Comments

Main diagonal is A108288. Antidiagonal sums is A108289. Inverse binomial transforms of each row give triangle A108290. G.f. of row n multiplied by (1-x)^(n+1) equals g.f. of row n of triangle A108267 (rows sums of A108267 equal (n+1)^n).

Examples

			row 1: (2*n+1)/1!
row 2: (3*n+1)*(3*n+2)/2!
row 3: (4*n+1)*(4*n+2)*(4*n+3)/3!
row 4: (5*n+1)*(5*n+2)*(5*n+3)*(5*n+4)/4!
row 5: (6*n+1)*(6*n+2)*(6*n+3)*(6*n+4)*(6*n+5)/5!.
Table begins:
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...
1,3,5,7,9,11,13,15,17,19,21,23,25,27,...
1,10,28,55,91,136,190,253,325,406,496,...
1,35,165,455,969,1771,2925,4495,6545,...
1,126,1001,3876,10626,23751,46376,82251,...
1,462,6188,33649,118755,324632,749398,...
1,1716,38760,296010,1344904,4496388,...
		

Crossrefs

Cf. A108290, A108267, A108288, A108289, A060544 (row 2), A015219 (row 3).
Rows include A000012, A001700, A025174. Columns include A000012, A005408, A060544. Main diagonal is A060545.

Programs

  • PARI
    T(n,k)=binomial(n+n*k+k,n*k+k)
    
  • PARI
    { i=0; write("b060543.txt", "0 1"); for (m=0, 20, for (k=0, m + 1, n=m - k + 1; write("b060543.txt", i++, " ", binomial(n + n*k + k, n*k + k))); ) } \\ Harry J. Smith, Jul 06 2009

Formula

a(n) = A060539(n, k)/n = A007318(nk, k)/n = A060540(n, k)/A060540(n-1, k).

Extensions

Entry revised by Paul D. Hanna, May 31 2005
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 17 2007

A001505 a(n) = (4n+1)(4n+2)(4n+3).

Original entry on oeis.org

6, 210, 990, 2730, 5814, 10626, 17550, 26970, 39270, 54834, 74046, 97290, 124950, 157410, 195054, 238266, 287430, 342930, 405150, 474474, 551286, 635970, 728910, 830490, 941094, 1061106, 1190910, 1330890, 1481430, 1642914, 1815726, 2000250, 2196870, 2405970
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A015219.

Programs

Formula

a(n) = 6 * A015219(n).
Sum_{n>=0} 1/a(n) = log(2)/4 = 0.17328679513998... [Jolley eq. 253. Typo fixed by Jaume Oliver Lafont, Jan 09 2009]
G.f.: 6*(1+x)*(x^2+30*x+1) / (x-1)^4. - R. J. Mathar, Apr 02 2011
Sum_{n>=0} (-1)^n/a(n) = (sqrt(2)-1)*Pi/8. - Amiram Eldar, Sep 17 2022
E.g.f.: 2*exp(x)*(3 + 102*x + 144*x^2 + 32*x^3). - Stefano Spezia, Aug 24 2025

A060541 a(n) = binomial(4*n, 4).

Original entry on oeis.org

1, 70, 495, 1820, 4845, 10626, 20475, 35960, 58905, 91390, 135751, 194580, 270725, 367290, 487635, 635376, 814385, 1028790, 1282975, 1581580, 1929501, 2331890, 2794155, 3321960, 3921225, 4598126, 5359095, 6210820, 7160245, 8214570, 9381251, 10668000, 12082785
Offset: 1

Views

Author

Henry Bottomley, Apr 02 2001

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(4 n, 4): n in [1..40]]; // Vincenzo Librandi, Jan 20 2015
  • Mathematica
    Table[Binomial[4n, 4], {n, 100}] (* Wesley Ivan Hurt, Sep 27 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,70,495,1820,4845},40] (* Harvey P. Dale, Jan 13 2015 *)
  • PARI
    a(n) = n*(2*n - 1)*(4*n - 1)*(4*n - 3)/3; \\ Harry J. Smith, Jul 06 2009
    

Formula

a(n) = n*(2n-1)*(4n-1)*(4n-3)/3.
a(n) = n * A015219(n-1) = A000332(4n) = A060539(n, 4).
G.f.: x*(1+65*x+155*x^2+35*x^3) / (1-x)^5. - R. J. Mathar, Oct 03 2011
From Amiram Eldar, Mar 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 6*log(2) - Pi.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*sqrt(2)*log(sqrt(2)-1) - log(2) + (2*sqrt(2) - 3/2)*Pi. (End)

Extensions

Offset changed from 0 to 1 by Harry J. Smith, Jul 06 2009

A014795 Squares of odd tetrahedral numbers.

Original entry on oeis.org

1, 1225, 27225, 207025, 938961, 3136441, 8555625, 20205025, 42837025, 83521321, 152300281, 262926225, 433680625, 688275225, 1056835081, 1576963521, 2294889025, 3266694025, 4559625625, 6253488241, 8442118161, 11234940025, 14758605225, 19158712225, 24601608801
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[((4*n+1)*(4*n+2)*(4*n+3)/6)^2, {n, 0, 40}] (* Amiram Eldar, Mar 07 2022 *)

Formula

From Amiram Eldar, Mar 07 2022: (Start)
a(n) = A015219(n)^2 = ((4*n+1)*(4*n+2)*(4*n+3)/6)^2.
Sum_{n>=0} 1/a(n) = 9*Pi*(Pi-3)/4. (End)

Extensions

More terms from Erich Friedman
More terms from Amiram Eldar, Mar 07 2022

A015220 Even tetrahedral numbers.

Original entry on oeis.org

0, 4, 10, 20, 56, 84, 120, 220, 286, 364, 560, 680, 816, 1140, 1330, 1540, 2024, 2300, 2600, 3276, 3654, 4060, 4960, 5456, 5984, 7140, 7770, 8436, 9880, 10660, 11480, 13244, 14190, 15180, 17296, 18424, 19600, 22100, 23426, 24804, 27720, 29260, 30856, 34220, 35990
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,3,-3,0,-3,3,0,1,-1},{0,4,10,20,56,84,120,220,286,364},41] (* Ant King, Oct 19 2012 *)
    Select[Table[(Times@@(n+{0,1,2}))/6,{n,0,60}],EvenQ] (* Harvey P. Dale, Jan 22 2013 *)

Formula

From Ant King, Oct 19 2012: (Start)
a(n) = a(n-1) + 3*a(n-3) - 3*a(n-4) - 3*a(n-6) + 3*a(n-7) + a(n-9) - a(n-10).
a(n) = 64 + 3*a(n-3) - 3*a(n-6) + a(n-9).
G.f.: 2*x*(2+3*x+5*x^2+12*x^3+5*x^4+3*x^5+2*x^6) / ((1-x)^4*(1+x+x^2)^3).
Sum_{n>=1} 1/a(n) = 3/2*(1-log(2)). (End)
From Amiram Eldar, Mar 07 2022: (Start)
a(n) = A000292(A004772(n+1)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*log(2) - 15/2 + 9*sqrt(2)*log(sqrt(2)+1)/2. (End)

Extensions

More terms from Erich Friedman
a(0) prepended by Amiram Eldar, Mar 07 2022

A178034 a(n) = binomial(n*Omega(n),Omega(n)) / n.

Original entry on oeis.org

1, 1, 1, 7, 1, 11, 1, 253, 17, 19, 1, 595, 1, 27, 29, 39711, 1, 1378, 1, 1711, 41, 43, 1, 138415, 49, 51, 3160, 3403, 1, 3916, 1, 25637001, 65, 67, 69, 477191, 1, 75, 77, 657359, 1, 7750, 1, 8515, 8911, 91, 1, 132563501, 97, 11026, 101, 11935, 1, 1633355
Offset: 1

Views

Author

Michel Lagneau, May 17 2010

Keywords

Comments

Omega(.) = A001222(.) is the number of prime divisors of n (counted with multiplicity).
binomial(nk,k)= n*binomial(nk-1,k-1) ensures that all entries are integers.
Subcases for this sequence:
If n is prime, Omega(n) = 1, and a(n) = binomial (n,1) / n = 1.
If n and n+1 are products of two primes (A070552), then Omega(n) = Omega(n+1) = 2, and binomial(n*Omega(n), Omega(n)) / n = binomial(2*n, 2) / n = 2*n-1 and binomial(2*(n+1), 2) / (n+1) = 2*n+1, and we obtain two consecutive numbers of the form (x, x+2), for example (17,19), (27,29), (41,43),... at n =9, 14...
Chaining this property: If n, n+1, and n+2 are semiprimes (A056809) , we find three consecutive numbers of the form (x, x+2,x+4), for example (65, 67, 69), (169, 171, 173), at n=33, 85.
At places where Omega(n)=3, we find the subsequence A060544, for example a(8) = A060544(8).
At places where Omega(n)=4, we find the subsequence A015219.

Examples

			a(8) = binomial(8*Omega(8),Omega(8))/8 = binomial(8*3,3)/8 = 2024/8 = 253.
		

Crossrefs

Programs

  • Maple
    A178034 := proc(n)
            local o ;
            o := numtheory[bigomega](n) ;
            binomial(n*o,o)/n ;
    end proc: # R. J. Mathar, Jul 08 2012
  • Mathematica
    bon[n_]:=Module[{o=PrimeOmega[n]},Binomial[n*o,o]/n]; Array[bon,60] (* Harvey P. Dale, Jul 22 2014 *)
  • PARI
    a(n)=my(b=bigomega(n));binomial(n*b,b)/n \\ Charles R Greathouse IV, Oct 25 2012

A204820 a(n) = -4*a(n-1)*A001505(n-2), with a(1)=8.

Original entry on oeis.org

8, -192, 161280, -638668800, 6974263296000, -162193467211776000, 6893871130369327104000, -483949753351926762700800000, 52208499391605859160162304000000, -8200911084433448356878294712320000000
Offset: 1

Views

Author

John M. Campbell, Jan 19 2012

Keywords

Comments

Sums of coefficients from (4n+1)th moments of binomial(m,k) * binomial(3*m,k); see Maple code below.

Examples

			The evaluation of sum(binomial(n, k)*binomial(3*n, k)*k^9, k=0..n) involves the polynomial 2187*n^11+6561*n^10-45927*n^9-28431*n^8+322947*n^7-257985*n^6-473445*n^5+726003*n^4-110482*n^3-189924*n^2+52624*n-4320, the sum of the coefficients of which is -192 = a(2).
		

Crossrefs

Programs

  • Maple
    with(PolynomialTools); polyn:=q->expand(simplify((1/(GAMMA(n-((2*floor((q+1)/4)-1))/(2))))*(1/sqrt(3))*GAMMA(n+1/3)*GAMMA(n+2/3)*(1/3)*(1/(27^(-n)))*GAMMA(n)*1/64^n*sum(binomial(n, k)*binomial(3*n, k)*k^q, k=0..n)*(1/(GAMMA(2*n-((2*floor(q/2)-1)/(2)))))*(2^((floor((1/2)*q+1/2)-1)+q)))); coefl:=h->CoefficientList(expand(polyn(h)), n); coe:=(d, b)->coefl(d)[b];seq(sum(coe((4*d+1),b),b=1..(4*d+1)+floor(((4*d+1)+1)/4)+floor((4*d+1)/2)),d=1..6);seq(-(1/8)*GAMMA(2*n-3/2)*GAMMA(n-1/2)*(-1)^n*64^n/Pi,n=1..6);

Formula

a(n)=-(1/8)*GAMMA(2*n-3/2)*GAMMA(n-1/2)*(-1)^n*64^n/Pi

A205795 Sums of coefficients of polynomials from 5n-th moments of X ~ Hypergeometric(4m, 5m, m).

Original entry on oeis.org

24, 2880, 43545600, 5230697472000, 2432902008176640000, 3102242008666197196800000, 8841761993739701954543616000000, 49205466506600690141269768273920000000, 485663859076129603777149565235783270400000000, 7911522544013240381082219675638737768808448000000000
Offset: 1

Views

Author

John M. Campbell, Feb 09 2012

Keywords

Comments

See Maple code below for formula for such polynomials.

Examples

			The evaluation of sum(binomial(n, k)*binomial(4*n, k)*k^5, k = 0 .. n) involves the polynomial  256*n^5-640*n^3+400*n^2+108*n-100, the sum of the coefficients of which is 24 = a(1).
		

Crossrefs

Programs

  • Maple
    with(PolynomialTools);polyn:=w->simplify(Pi^2*sum(binomial(n,k)*binomial(4*n,k)*k^w,k=0..n)*5^w/3125^n*csc((1/5)*Pi)*csc((2/5)*Pi)*GAMMA(4*n)/GAMMA(n-(floor((w+1)/5)*5-2)/5)/GAMMA(n-(floor(w/5)*5-1)/5)/GAMMA(n-(floor((w+2)/5)*5-3)/5)/GAMMA(n-(floor((w+3)/5)*5-4)/5));coefl:=d->CoefficientList(expand(polyn(d)),n);seq(sum(coefl(5*h)[m],m=1..nops(coefl(5*h))),h=1..5);seq(simplify(12*5^(5*n-5)*GAMMA(n-4/5)*GAMMA(n-3/5)*GAMMA(n-2/5)*GAMMA(n-1/5)*(cos((2/5)*Pi)+cos((1/5)*Pi))/Pi^2),n=1..5);

Formula

a(n) = 120*A151989(n-2)*a(n-1), with a(1)=24.
a(n) = 12*5^(5*n-5)*GAMMA(n-4/5)*GAMMA(n-3/5)*GAMMA(n-2/5)*GAMMA(n-1/5)*(cos((2/5)*Pi)+cos((1/5)*Pi))/Pi^2.
Showing 1-10 of 10 results.