A015249 Gaussian binomial coefficient [ n,2 ] for q = -2.
1, 3, 15, 55, 231, 903, 3655, 14535, 58311, 232903, 932295, 3727815, 14913991, 59650503, 238612935, 954429895, 3817763271, 15270965703, 61084037575, 244335800775, 977343902151, 3909374210503, 15637499638215
Offset: 2
References
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Links
- G. C. Greubel, Table of n, a(n) for n = 2..500
- Index entries for linear recurrences with constant coefficients, signature (3,6,-8)
Programs
-
Mathematica
Join[{a=1,b=3},Table[c=2*b+8*a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 05 2011 *) Table[QBinomial[n, 2, -2], {n, 2, 25}] (* G. C. Greubel, Jul 30 2016 *)
-
PARI
a(n)=(4^n - 2 + (-1)^n*2^n)/18 \\ Charles R Greathouse IV, Jul 30 2016
-
Python
def A015249(n): return ((m:=1<
>1|1)//3) # Chai Wah Wu, Apr 25 2025 -
Sage
[gaussian_binomial(n,2,-2) for n in range(2,25)] # Zerinvary Lajos, May 28 2009
Formula
G.f.: x^2/((1-x)*(1+2*x)*(1-4*x)).
From Vincenzo Librandi, Mar 20 2011: (Start)
a(n) = 5*a(n-1) - 4*a(n-2) + (-1)^n *2^(n-2), n >= 4.
a(n) = 3*a(n-1) + 6*a(n-2) - 8*a(n-3), n >= 3. (End)
a(n) = (1/18)*(4^n - 2 + (-1)^n*2^n). - R. J. Mathar, Mar 21 2011
E.g.f.: 2*exp(x)*sinh(3*x/2)^2/9. - Stefano Spezia, Apr 25 2025