cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015249 Gaussian binomial coefficient [ n,2 ] for q = -2.

Original entry on oeis.org

1, 3, 15, 55, 231, 903, 3655, 14535, 58311, 232903, 932295, 3727815, 14913991, 59650503, 238612935, 954429895, 3817763271, 15270965703, 61084037575, 244335800775, 977343902151, 3909374210503, 15637499638215
Offset: 2

Views

Author

Olivier Gérard, Dec 11 1999

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Except for initial terms, same as A084152 and A084175.

Programs

Formula

G.f.: x^2/((1-x)*(1+2*x)*(1-4*x)).
From Vincenzo Librandi, Mar 20 2011: (Start)
a(n) = 5*a(n-1) - 4*a(n-2) + (-1)^n *2^(n-2), n >= 4.
a(n) = 3*a(n-1) + 6*a(n-2) - 8*a(n-3), n >= 3. (End)
a(n) = (1/18)*(4^n - 2 + (-1)^n*2^n). - R. J. Mathar, Mar 21 2011
E.g.f.: 2*exp(x)*sinh(3*x/2)^2/9. - Stefano Spezia, Apr 25 2025