cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015523 a(n) = 3*a(n-1) + 5*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 3, 14, 57, 241, 1008, 4229, 17727, 74326, 311613, 1306469, 5477472, 22964761, 96281643, 403668734, 1692414417, 7095586921, 29748832848, 124724433149, 522917463687, 2192374556806, 9191710988853, 38537005750589
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Aug 01 2010: (Start)
a(n) represents the number of n-move routes of a fairy chess piece starting in a given corner square (m = 1, 3, 7 and 9) on a 3 X 3 chessboard. This fairy chess piece behaves like a king on the eight side and corner squares but on the central square the king goes crazy and turns into a red king, see A179596.
For n >= 1, the sequence above corresponds to 24 red king vectors, i.e., A[5] vectors, with decimal values 27, 30, 51, 54, 57, 60, 90, 114, 120, 147, 150, 153, 156, 177, 180, 210, 216, 240, 282, 306, 312, 402, 408 and 432. These vectors lead for the side squares to A152187 and for the central square to A179606.
This sequence belongs to a family of sequences with g.f. 1/(1-3*x-k*x^2). Red king sequences that are members of this family are A007482 (k=2), A015521 (k=4), A015523 (k=5; this sequence), A083858 (k=6), A015524 (k=7) and A015525 (k=8). We observe that there is no red king sequence for k=3. Other members of this family are A049072 (k=-4), A057083 (k=-3), A000225 (k=-2), A001906 (k=-1), A000244 (k=0), A006190 (k=1), A030195 (k=3), A099012 (k=9), A015528 (k=10) and A015529 (k=11).
Inverse binomial transform of A052918 (with extra leading 0).
(End)
First differences in A197189. - Bruno Berselli, Oct 11 2011
Pisano period lengths: 1, 3, 4, 6, 4, 12, 3, 12, 12, 12, 120, 12, 12, 3, 4, 24, 288, 12, 72, 12, ... - R. J. Mathar, Aug 10 2012
This is the Lucas U(P=3, Q=-5) sequence, and hence for n >= 0, a(n+2)/a(n+1) equals the continued fraction 3 + 5/(3 + 5/(3 + 5/(3 + ... + 5/3))) with n 5's. - Greg Dresden, Oct 06 2019

Crossrefs

Programs

  • Magma
    [ n eq 1 select 0 else n eq 2 select 1 else 3*Self(n-1)+5*Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Aug 23 2011
    
  • Mathematica
    Join[{a = 0, b = 1}, Table[c = 3 * b + 5 * a; a = b; b = c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
    a[0] := 0; a[1] := 1; a[n_] := a[n] = 3a[n - 1] + 5a[n - 2]; Table[a[n], {n, 0, 49}] (* Alonso del Arte, Jan 16 2011 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1-3*x-5*x^2))) \\ G. C. Greubel, Jan 01 2018
  • Sage
    [lucas_number1(n,3,-5) for n in range(0, 24)] # Zerinvary Lajos, Apr 22 2009
    

Formula

a(n) = 3*a(n-1) + 5*a(n-2).
From Paul Barry, Jul 20 2004: (Start)
a(n) = ((3/2 + sqrt(29)/2)^n - (3/2 - sqrt(29)/2)^n)/sqrt(29).
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-k-1,k)*5^k*3^(n-2*k-1). (End)
G.f.: x/(1 - 3*x - 5*x^2). - R. J. Mathar, Nov 16 2007
From Johannes W. Meijer, Aug 01 2010: (Start)
Limit_{k->oo} a(n+k)/a(k) = (A072263(n) + a(n)*sqrt(29))/2.
Limit_{n->oo} A072263(n)/a(n) = sqrt(29). (End)
G.f.: G(0)*x/(2-3*x), where G(k) = 1 + 1/(1 - x*(29*k-9)/(x*(29*k+20) - 6/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 17 2013
E.g.f.: 2*exp(3*x/2)*sinh(sqrt(29)*x/2)/sqrt(29). - Stefano Spezia, Oct 06 2019