A206768
a(n) = smallest number k such that sigma(k-n) = sigma(k) - n, with k > n+1.
Original entry on oeis.org
3, 5, 5, 7, 7, 11, 81, 11, 11, 13, 13, 17, 4431, 17, 17, 19, 19, 23, 25, 23, 23, 29
Offset: 1
a(13) = 4431 because 4431 is the minimum number for which sigma(4431-13) = sigma(4418)= 6771 and sigma(4431) - 13 = 6784 -13 = 6771.
a(19) = 25 because 25 is the minimum number for which sigma(25-19) = sigma(6) = 12 and sigma(25) - 19 = 31 -19 = 12.
A063680
Solutions to sigma(k) + 7 = sigma(k+7).
Original entry on oeis.org
74, 531434, 387420482, 2541865828322
Offset: 1
sigma(74) + 7 = 121 = sigma(74+7), so 74 is in the sequence.
A305196
a(n) is the smallest number k such that tau(k + n) = tau(k) + n where tau(n) is the number of divisors of n (A000005).
Original entry on oeis.org
1, 1, 10, 9, 26, 25, 74, 29, 82, 441, 170, 133, 348, 131, 166, 3025, 344, 559, 1602, 557, 820, 9979, 986, 4333, 1236, 9191, 694, 3249, 1652, 3481, 9378, 34969, 3118, 249967, 5636, 36829, 3324, 51947, 3994, 6561, 5000, 15835, 16806, 3557, 6436, 119025, 6254, 589777, 7512, 1768851
Offset: 0
10 and 12 have respectively 4 and 6 divisors, that is, 12-10 = 6-4, so a(2)=10.
9 and 12 have respectively 3 and 6 divisors, that is, 12-9 = 6-3, so a(3)=9.
-
f:= proc(n) local k;
for k from 1 do
if numtheory:-tau(k+n)=numtheory:-tau(k)+n then return k fi
od
end proc:
map(f, [$0..50]); # Robert Israel, May 28 2018
-
Array[Block[{k = 1}, While[DivisorSigma[0, k + #] != DivisorSigma[0, k] + #, k++]; k] &, 40, 0] (* Michael De Vlieger, May 27 2018 *)
-
a(n) = {my(k=1); while(numdiv(k+n) != numdiv(k) + n, k++); k;}
A217259
Numbers n such that sigma(n+1) - sigma(n-1) = 2; sigma(n) = A000203(n) = sum of divisors of n.
Original entry on oeis.org
4, 6, 12, 18, 30, 42, 60, 72, 102, 108, 138, 150, 180, 192, 198, 228, 240, 270, 282, 312, 348, 420, 432, 435, 462, 522, 570, 600, 618, 642, 660, 810, 822, 828, 858, 882, 1020, 1032, 1050, 1062, 1092, 1152, 1230, 1278, 1290, 1302, 1320, 1428, 1452, 1482, 1488
Offset: 1
Number 435 is in sequence because antisigma(436) - antisigma(434) = 94496 - 93627 = 869 = 2*435 - 1.
A290125
Square array read by antidiagonals T(n,k) = sigma(k + n) - sigma(k) - n, with n>=0 and k>=1.
Original entry on oeis.org
0, 0, 1, 0, 0, 1, 0, 2, 2, 3, 0, -2, 0, 0, 1, 0, 5, 3, 5, 5, 6, 0, -5, 0, -2, 0, 0, 1, 0, 6, 1, 6, 4, 6, 6, 7, 0, -3, 3, -2, 3, 1, 3, 3, 4, 0, 4, 1, 7, 2, 7, 5, 7, 7, 8, 0, -7, -3, -6, 0, -5, 0, -2, 0, 0, 1, 0, 15, 8, 12, 9, 15, 10, 15, 13, 15, 15, 16
Offset: 0
Array begins:
0, 0, 0, 0, 0, 0, 0, ...
1, 0, 2, -2, 5, -5, 6, ...
1, 2, 0, 3, 0, 1, 3, ...
3, 0, 5, -2, 6, -2, 7, ...
1, 5, 0, 4, 3, 2, 0, ...
6, 0, 6, 1, 7, -5, 15, ...
1, 6, 3, 5, 0, 10, 0, ...
7, 3, 7, -2, 15, -5, 9, ...
...
-
Table[Function[n, If[k + n == 0, 0, DivisorSigma[1, k + n]] - If[k == 0, 0, DivisorSigma[1, k]] - n][m - k], {m, 12}, {k, m, 1, -1}] // Flatten (* Michael De Vlieger, Jul 20 2017 *)
-
T(n,k) = sigma(k + n) - sigma(k) - n;
-
a(n) = n++; my(s = ceil((-1+sqrt(1+8*n))/2));r=n-binomial(s,2)-1;k=s-r;T(r,k) \\ David A. Corneth, Jul 20 2017
-
from sympy import divisor_sigma
l=[]
def T(n, k):
return 0 if n==0 or k==0 else divisor_sigma(k + n) - divisor_sigma(k) - n
for n in range(11): l+=[T(k, n - k + 1) for k in range(n + 1)]
print(l) # Indranil Ghosh, Jul 21 2017
A304994
a(n) is the smallest number k such that sigma(k + n) = sigma(k) - n, or -1 if no such number exists.
Original entry on oeis.org
1, 4, 6976, 8, 15
Offset: 0
sigma(4+1) - sigma(4) = -1, so a(1) = 4, since this does not happen for x < 4.
sigma(8+3) - sigma(8) = -3, so a(3) = 8, since this does not happen for x < 8.
A255354
a(n) = smallest number k such that (k + n)' = k', or -1 if no such number exists, where k' is the arithmetic derivative of k.
Original entry on oeis.org
2, 3, 2, 3, 2, 5, 110, 3, 2, 3, 2, 5, 50145, 3, 2, 3, 2, 5, 53115, 3, 2, 7, 189, 5, 273, 3, 2, 3, 2, 7, 75, 5, 930642191642, 3, 2, 5, 165, 3, 2, 3, 2, 5, 12, 3, 2, 7, 99, 5, 182, 3, 2, 7, 706, 5, 1523965807, 3, 2, 3, 2, 7, 494, 5
Offset: 1
a(1) = 2 because (2 + 1)' = 2' = 1.
a(2) = 3 because (3 + 2)' = 3' = 1.
a(3) = 2 because (2 + 3)' = 2' = 1.
...
a(7) = 110 because (110 + 7)' = 110' = . Etc.
-
with(numtheory): P:=proc(q) local a,b,k,n,p;
for n from 1 to q do for k from 1 to q do
a:=k*add(op(2,p)/op(1,p),p=ifactors(k)[2]); b:=(k+n)*add(op(2,p)/op(1,p),p=ifactors(k+n)[2]);
if a=b then print(k); break; fi; od;
od; end: P(10^20);
Showing 1-7 of 7 results.
Comments