cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015949 Numbers k such that k | 3^k + 1.

Original entry on oeis.org

1, 2, 10, 50, 250, 1250, 5050, 6250, 11810, 25250, 31250, 59050, 126250, 156250, 295250, 510050, 631250, 750250, 781250, 1476250, 2125250, 2550250, 3156250, 3751250, 3906250, 5964050, 7381250, 10626250, 12751250, 13947610, 15781250
Offset: 1

Views

Author

Keywords

Comments

a(n) mod 20 = 10 for n >= 3. - G. C. Greubel, Nov 05 2018
This sequence is infinite, because for n > 1, 3^a(n) + 1 is in this sequence. - Jinyuan Wang, Nov 06 2018
For the provided data, if k is a term then p*k is a term where p is an odd divisor of k. - David A. Corneth, Nov 06 2018

Crossrefs

Cf. A034472 (3^n+1).
Cf. A006521 (k | 2^k + 1), A015950 (k | 4^k + 1), A015951 (k | 5^k + 1).
Column k=3 of A333429.

Programs

  • Magma
    [n: n in [1..2*10^7]| Modexp(3, n, n)+1 eq n]; // Vincenzo Librandi, Nov 01 2018
  • Mathematica
    Do[If[PowerMod[3, n, n] + 1 == n, Print[n]], {n, 1, 10^7}] (* Jinyuan Wang, Nov 01 2018 *)
    Select[Range[16*10^6],PowerMod[3,#,#]==#-1&] (* Harvey P. Dale, Dec 15 2024 *)
  • PARI
    for(n=1, 10^7, if(Mod(3, n)^n==-1, print1(n, ", "))) \\ Jinyuan Wang, Nov 01 2018
    

Extensions

Corrected by David W. Wilson