cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A078457 a(n) = least positive k such that the remainder when 3^k is divided by k is n.

Original entry on oeis.org

1, 2, 2929, 5, 41459, 76, 21, 295, 2352527, 10, 963400369, 1162, 15, 68, 22082967607, 42, 144937, 217, 25, 1054, 1948397, 60, 14495, 266, 721, 28, 4343, 33, 193511, 52, 6884974839, 49, 1055, 48, 622699582951, 39806, 333, 44, 205, 70, 791, 460, 335, 725, 439889
Offset: 0

Views

Author

Robert G. Wilson v, Dec 31 2002

Keywords

Comments

a(n) > n. Numbers n such that a(n-1) = n are listed in A015949.
a(n) for which no value is currently known: n = 394, 494, 634, 730, 974, 986, 1000, ...

Crossrefs

Programs

  • Mathematica
    a = Table[0, {50}]; Do[b = PowerMod[3, n, n]; If[b < 51 && a[[b]] == 0, a[[b]] = n], {n, 1, 56*10^6}]; a
    t = Table[0, {1000} ]; k = 1; While[ k < 200000000, a = PowerMod[3, k, k]; If[a < 1001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t

Extensions

More terms from Don Reble, Jan 02 2003
a(14) conjectured by Max Alekseyev, Jun 17 2006
a(14) confirmed by Ryan Propper, Feb 03 2007
a(30) from Ryan Propper, Feb 03 2007
a(56), a(110), a(128), a(134), a(187), a(286), a(348), a(392), a(470), a(512), a(550), a(596), a(672), a(676), a(688), a(703), a(716), a(748), a(772), a(784), a(860), a(980) from Jan-Christoph Schlage-Puchta (jcp(AT)mathematik.uni-freiburg.de), May 26 2008
Corrections from Jon E. Schoenfield, Oct 10 2008
a(664), a(928) from Mark Forbes (m.g.forbes(AT)ieee.org), Oct 25 2009
a(34), a(74), a(160) from Hagen von Eitzen, May 08, Jun 16 2009
a(254), a(310) from Daniel Morel, Sep 13, Sep 29 2009
Edited by Max Alekseyev, Feb 11 2012

A333429 A(n,k) is the n-th number m that divides k^m + 1 (or 0 if m does not exist); square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 3, 0, 1, 2, 9, 0, 1, 5, 10, 27, 0, 1, 2, 25, 50, 81, 0, 1, 7, 3, 125, 250, 171, 0, 1, 2, 49, 9, 205, 1250, 243, 0, 1, 3, 10, 203, 21, 625, 5050, 513, 0, 1, 2, 9, 50, 343, 26, 1025, 6250, 729, 0, 1, 11, 5, 27, 250, 1379, 27, 2525, 11810, 1539, 0
Offset: 1

Views

Author

Alois P. Heinz, Mar 20 2020

Keywords

Examples

			Square array A(n,k) begins:
  1,    1,     1,    1,   1,    1,     1,   1,    1,     1, ...
  2,    3,     2,    5,   2,    7,     2,   3,    2,    11, ...
  0,    9,    10,   25,   3,   49,    10,   9,    5,   121, ...
  0,   27,    50,  125,   9,  203,    50,  27,   25,   253, ...
  0,   81,   250,  205,  21,  343,   250,  57,   82,  1331, ...
  0,  171,  1250,  625,  26, 1379,  1250,  81,  125,  2783, ...
  0,  243,  5050, 1025,  27, 1421,  2810, 171,  625,  5819, ...
  0,  513,  6250, 2525,  63, 2401,  5050, 243, 2525, 11891, ...
  0,  729, 11810, 3125,  81, 5887,  6250, 513, 3125, 14641, ...
  0, 1539, 25250, 5125, 147, 9653, 14050, 729, 3362, 30613, ...
		

Crossrefs

Rows n=1-2 give: A000012, A092067.
Main diagonal gives A333430.
Cf. A333432.

Programs

  • Maple
    A:= proc() local h, p; p:= proc() [1] end;
          proc(n, k) if k=1 then `if`(n<3, n, 0) else
            while nops(p(k)) 0 do od;
              p(k):= [p(k)[], h]
            od; p(k)[n] fi
          end
        end():
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
  • Mathematica
    dmax = 12;
    mmax = 2^(dmax+3);
    col[k_] := col[k] = Select[Range[mmax], Divisible[k^#+1, #]&];
    A[n_, k_] := If[n>2 && k==1, 0, col[k][[n]]];
    Table[A[n, d-n+1], {d, 1, dmax}, {n, 1, d}] // Flatten (* Jean-François Alcover, Jan 05 2021 *)

A015973 Positive integers n such that n | (3^n + 2).

Original entry on oeis.org

1, 5, 77, 278377, 3697489, 219596687717, 56865169816619
Offset: 1

Views

Author

Keywords

Comments

No other terms below 10^15. Some larger term: 3142423971953435020522506484187. - Max Alekseyev, Aug 04 2011

Crossrefs

Solutions to 3^n == k (mod n): A277340 (k=-11), A277289 (k=-7), A277288 (k=-5), this sequence (k=-2), A015949 (k=-1), A067945 (k=1), A276671 (k=2), A276740 (k=5), A277126 (k=7), A277274 (k=11).

Extensions

a(1)=1 prepended and a(6)-a(7) added by Max Alekseyev, Aug 04 2011

A015954 Numbers k such that k | 7^k + 1.

Original entry on oeis.org

1, 2, 10, 50, 250, 1250, 2810, 5050, 6250, 14050, 25250, 31250, 40210, 70250, 126250, 156250, 201050, 351250, 510050, 631250, 650050, 781250, 789610, 1005250, 1265050, 1419050, 1756250, 2550250, 3156250, 3250250, 3906250, 3948050, 5026250, 6325250, 7095250, 8781250, 9478130
Offset: 1

Views

Author

Keywords

Crossrefs

Solutions to b^k == -1 (mod k): A006521 (b=2), A015949 (b=3), A015950 (b=4), A015951 (b=5), A015953 (b=6), this sequence (b=7), A015955 (b=8), A015957 (b=9), A015958 (b=10), A015960 (b=11), A015961 (b=12), A015963 (b=13), A015965 (b=14), A015968 (b=15), A015969 (b=16).
Column k=7 of A333429.

A276671 Positive integers k such that 3^k == 2 (mod k).

Original entry on oeis.org

1, 2929, 9742277641, 23341869101, 15092205901438895, 16311037042239935
Offset: 1

Views

Author

Max Alekseyev, Oct 05 2016

Keywords

Comments

No other terms below 2*10^16. A larger term: 31744873758348589012852097851.

Crossrefs

Programs

  • Mathematica
    Join[{1}, Select[Range[10000], PowerMod[3, #, #] == 2 &]] (* Alonso del Arte, Oct 11 2016 *)
  • PARI
    isok(n) = Mod(3, n)^n == Mod(2, n); \\ Dmitry Ezhov, Sep 28 2016

Extensions

Order of terms corrected by Felix Fröhlich, Oct 06 2016
a(5)-a(6) from Sergey Paramonov, Oct 03 2021

A015960 Numbers k such that k | 11^k + 1.

Original entry on oeis.org

1, 2, 3, 9, 27, 81, 111, 122, 243, 333, 729, 999, 2187, 2997, 4107, 6561, 7442, 8991, 10233, 12321, 13203, 19683, 24753, 26973, 30699, 36963, 39609, 59049, 74259, 80919, 89426, 92097, 110889, 118341, 118827, 151959, 177147, 222777
Offset: 1

Views

Author

Keywords

Crossrefs

Solutions to b^k == -1 (mod k): A006521 (b=2), A015949 (b=3), A015950 (b=4), A015951 (b=5), A015953 (b=6), A015954 (b=7), A015955 (b=8), A015957 (b=9), A015958 (b=10), this sequence (b=11), A015961 (b=12), A015963 (b=13), A015965 (b=14), A015968 (b=15), A015969 (b=16).
Cf. A333134.
Column k=11 of A333429.

Programs

  • Mathematica
    Select[Range[250000],PowerMod[11,#,#]==#-1&] (* Harvey P. Dale, Nov 09 2022 *)

A015953 Numbers k such that k | 6^k + 1.

Original entry on oeis.org

1, 7, 49, 203, 343, 1379, 1421, 2401, 5887, 9653, 9947, 11977, 16807, 39991, 41209, 67571, 69629, 83839, 117649, 170723, 271663, 279937, 288463, 347333, 472997, 487403, 586873, 706643, 823543, 1159739, 1195061, 1901641, 1959559, 2019241, 2359469, 2431331
Offset: 1

Views

Author

Keywords

Crossrefs

Solutions to b^k == -1 (mod k): A006521 (b=2), A015949 (b=3), A015950 (b=4), A015951 (b=5), this sequence (b=6), A015954 (b=7), A015955 (b=8), A015957 (b=9), A015958 (b=10), A015960 (b=11), A015961 (b=12), A015963 (b=13), A015965 (b=14), A015968 (b=15), A015969 (b=16).
Column k=6 of A333429.

Programs

  • Mathematica
    Select[Range[2000000],PowerMod[6,#,#]==#-1&] (* Harvey P. Dale, Aug 28 2012 *)

A015955 Numbers k such that k | 8^k + 1.

Original entry on oeis.org

1, 3, 9, 27, 57, 81, 171, 243, 513, 729, 1083, 1539, 2187, 3249, 4401, 4617, 6561, 9747, 13203, 13851, 19683, 20577, 29241, 32547, 39609, 41553, 59049, 61731, 83619, 87723, 97641, 118179, 118827, 124659, 177147, 185193, 250857, 263169
Offset: 1

Views

Author

Keywords

Crossrefs

Solutions to b^k == -1 (mod k): A006521 (b=2), A015949 (b=3), A015950 (b=4), A015951 (b=5), A015953 (b=6), A015954 (b=7), this sequence (b=8), A015957 (b=9), A015958 (b=10), A015960 (b=11), A015961 (b=12), A015963 (b=13), A015965 (b=14), A015968 (b=15), A015969 (b=16).
Column k=8 of A333429.

A015957 Numbers k such that k | 9^k + 1.

Original entry on oeis.org

1, 2, 5, 25, 82, 125, 625, 2525, 3125, 3362, 5905, 12625, 15625, 29525, 63125, 78125, 137842, 147625, 188354, 255025, 315625, 375125, 390625, 738125, 1062625, 1275125, 1578125, 1875625, 1953125, 2982025, 3690625, 5313125, 5651522, 6375625, 6973805
Offset: 1

Views

Author

Keywords

Crossrefs

Solutions to b^k == -1 (mod k): A006521 (b=2), A015949 (b=3), A015950 (b=4), A015951 (b=5), A015953 (b=6), A015954 (b=7), A015955 (b=8), this sequence (b=9), A015958 (b=10), A015960 (b=11), A015961 (b=12), A015963 (b=13), A015965 (b=14), A015968 (b=15), A015969 (b=16).
Column k=9 of A333429.

Programs

  • Mathematica
    Select[Range[7*10^6],PowerMod[9,#,#]==#-1&] (* Harvey P. Dale, Apr 21 2024 *)

Extensions

More terms from David W. Wilson

A015958 Numbers k such that k | 10^k + 1.

Original entry on oeis.org

1, 11, 121, 253, 1331, 2783, 5819, 11891, 14641, 30613, 35167, 45023, 64009, 96569, 130801, 133837, 161051, 273493, 336743, 386837, 495253, 527197, 558877, 640343, 704099, 808841, 1035529, 1062259, 1438811, 1472207, 1652849, 1771561, 2221087, 3008423, 3045449
Offset: 1

Views

Author

Keywords

Crossrefs

Solutions to b^k == -1 (mod k): A006521 (b=2), A015949 (b=3), A015950 (b=4), A015951 (b=5), A015953 (b=6), A015954 (b=7), A015955 (b=8), A015957 (b=9), this sequence (b=10), A015960 (b=11), A015961 (b=12), A015963 (b=13), A015965 (b=14), A015968 (b=15), A015969 (b=16).
Column k=10 of A333429.

Programs

  • Mathematica
    Select[Range[15*10^5],PowerMod[10,#,#]==#-1&] (* Harvey P. Dale, Oct 01 2017 *)

Extensions

Corrected by T. D. Noe, Oct 31 2006
Showing 1-10 of 22 results. Next