cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016061 a(n) = n*(n+1)*(4*n+5)/6.

Original entry on oeis.org

0, 3, 13, 34, 70, 125, 203, 308, 444, 615, 825, 1078, 1378, 1729, 2135, 2600, 3128, 3723, 4389, 5130, 5950, 6853, 7843, 8924, 10100, 11375, 12753, 14238, 15834, 17545, 19375, 21328, 23408, 25619, 27965, 30450, 33078, 35853, 38779, 41860
Offset: 0

Views

Author

Keywords

Comments

Number of ZnS molecules in cluster of n layers in zinc blende crystal.
(Zinc sulfide crystallizes in two different forms: wurtzite and zinc blende, the latter is also spelled zincblende.) - Jonathan Vos Post, Jan 22 2013
The Kn4 triangle sums of the Connell-Pol triangle A159797 lead to the sequence given above. For the definitions of the Kn4 and other triangle sums see A180662. - Johannes W. Meijer, May 20 2011
If one generated primitive Pythagorean triangles (2n+1, 2n+3) the collective sum of their perimeters for each n is four times the numbers listed in this sequence. - J. M. Bergot, Jul 18 2011
a(n) is the number of 3-tuples (w,x,y) having all terms in {0,...,n} and nA000292(n)+A000292(n+1)=n^3. - Clark Kimberling, Jun 04 2012
Degrees of the Hilbert polynomials for B_3 and C_3, per p. 13 of Gashi et al. - Jonathan Vos Post, Dec 14 2013
Number of solutions to a + b = c + d when 0 < a <= k, 0 <= b, c, d <= k, k = 0, 1, 2, 3.... Taken from Step 1 2007 problem #1(i) using 4 digit balanced numbers. - Bobby Milazzo, Mar 09 2013
From J. M. Bergot, Jun 18 2013: (Start)
Consider the lower half, including the main diagonal, of the array in A144216 as a triangle. The rows begin:
0;
1, 2;
3, 4, 6;
6, 7, 9, 12, ...
The sum of the terms in row(n) is a(n). (End)
This sequence is related to A008865 by a(n) = n*A008865(n+1) - Sum_{i=1..n} A008865(i) for n>0. - Bruno Berselli, Aug 06 2015

References

  • P. Jena and S. N. Behera, Clusters and Nanostructured Materials, Nova Science Publishers, 1996.

Crossrefs

Bisection of A002623.
Row sums of triangle A120070.

Programs

  • Magma
    I:=[0,3,13,34]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 25 2013
  • Maple
    A016061 := proc(n)
        n*(n+1)*(4*n+5)/6 ;
    end proc: # R. J. Mathar, Sep 26 2013
  • Mathematica
    CoefficientList[Series[x (3 + x) / (1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 25 2013 *)
    Table[n(n+1)(4*n+5)/6, {n,0,100}] (* Wesley Ivan Hurt, Sep 25 2013 *)
  • PARI
    v=vector(40,i,t(i)); s=0; forstep(i=2,40,2,s+=v[i]; print1(s","))
    

Formula

G.f.: x*(3+x)/(1-x)^4. - Paul Barry, Feb 27 2003
Partial sums of A014105. - Jon Perry, Jul 23 2003
a(n) = Sum_{i=0..n-1} 2*i^2 + i. - Jani Nurminen (slinky(AT)iki.fi), May 14 2006
a(n) = 2*n^3/3 +3*n^2/2 + 5*n/6. - Jonathan Vos Post, Dec 14 2013
a(n) = (4*n+5)/(2*n+1)*A000330(n). - Alexander R. Povolotsky, Mar 09 2013
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Bobby Milazzo, Mar 10 2013
Sum_{n>=1} 1/a(n) = 12*Pi/5 + 72*log(2)/5 - 426/25. - Amiram Eldar, Jan 04 2022
E.g.f.: exp(x)*x*(18 + 21*x + 4*x^2)/6. - Stefano Spezia, Jul 31 2022