cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016125 Expansion of 1/((1-x)*(1-12*x)).

Original entry on oeis.org

1, 13, 157, 1885, 22621, 271453, 3257437, 39089245, 469070941, 5628851293, 67546215517, 810554586205, 9726655034461, 116719860413533, 1400638324962397, 16807659899548765, 201691918794585181
Offset: 0

Views

Author

Keywords

Comments

Let A be the Hessenberg matrix of the order n, defined by: A[1,j]=1, A[i,i]:=12, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=det(A). - Milan Janjic, Feb 21 2010
Let A be the Hessenberg matrix of the order n, defined by: A[1,j]=1, A[i,i]:=13, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=2, a(n-2)=(-1)^n*charpoly(A,1). - Milan Janjic, Feb 21 2010
Numbers that are repunits in duodecimal representation. - Reinhard Zumkeller, Dec 12 2012
a(n) is the total number of holes in a certain box fractal (start with 12 boxes, 1 hole) after n iterations. See illustration in links. - Kival Ngaokrajang, Jan 28 2015

Examples

			For n=5, a(5) = 1*6 + 11*15 + 121*20 + 1331*15 + 14641*6 + 161051*1 = 271453. - _Bruno Berselli_, Nov 11 2015
		

Crossrefs

Programs

Formula

a(n) = (12^(n+1) - 1)/11.
a(n) = 12*a(n-1)+1 for n>0, a(0)=1. - Vincenzo Librandi, Nov 19 2010
a(n) = Sum_{i=0...n} 11^i*binomial(n+1,n-i). - Bruno Berselli, Nov 11 2015
E.g.f.: exp(x)*(12*exp(11*x) - 1)/11. - Stefano Spezia, Mar 11 2023