cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A016129 Expansion of 1/((1-2*x)*(1-6*x)).

Original entry on oeis.org

1, 8, 52, 320, 1936, 11648, 69952, 419840, 2519296, 15116288, 90698752, 544194560, 3265171456, 19591036928, 117546237952, 705277460480, 4231664828416, 25389989101568, 152339934871552, 914039609753600, 5484237659570176, 32905425959518208, 197432555761303552
Offset: 0

Views

Author

Keywords

Crossrefs

Row sums of A100851.
Sequences with gf 1/((1-n*x)*(1-6*x)): A000400 (n=0), A003464 (n=1), this sequence (n=2), A016137 (n=3), A016149 (n=4), A005062 (n=5), A053469 (n=6), A016169 (n=7), A016170 (n=8), A016172 (n=9), A016173 (n=10), A016174 (n=11), A016175 (n=12).

Programs

Formula

a(n) = A071951(n+2, 2) = 9*(2*3)^(n-1) - (2*1)^(n-1) = (2^(n-1))*(3^(n+1)-1), n>=0. - Wolfdieter Lang, Nov 07 2003
From Lambert Klasen (lambert.klasen(AT)gmx.net), Feb 05 2005: (Start)
G.f.: 1/((1-2*x)*(1-6*x)).
E.g.f.: (-exp(2*x) + 3*exp(6*x))/2.
a(n) = (6^(n+1) - 2^(n+1))/4. (End)
a(n)^2 = A144843(n+1). - Philippe Deléham, Nov 26 2008
a(n) = 8*a(n-1) - 12*a(n-2). - Philippe Deléham, Jan 01 2009
a(n) = det(|ps(i+2,j+1)|, 1 <= i,j <= n), where ps(n,k) are Legendre-Stirling numbers of the first kind (A129467). - Mircea Merca, Apr 06 2013

A020726 Expansion of g.f. 1/((1-6*x)*(1-10*x)*(1-11*x)).

Original entry on oeis.org

1, 27, 493, 7599, 106645, 1411431, 17955757, 222093423, 2690508229, 32080473975, 377794514461, 4405195463487, 50953884924853, 585473143132359, 6690087028209805, 76090252032830991, 861988540696279717, 9731848557669909783, 109550181794434004989, 1230051085699164039135
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1-6x)(1-10x)(1-11x)),{x,0,30}],x] (* or *) LinearRecurrence[{27,-236,660},{1,27,493},30] (* Harvey P. Dale, Oct 01 2014 *)
  • PARI
    Vec(1/((1-6*x)*(1-10*x)*(1-11*x)) + O(x^30)) \\ Jinyuan Wang, Mar 10 2020

Formula

a(n) = 21*a(n-1) - 110*a(n-2) + 6^n for n>1, a(0)=1, a(1)=27. - Vincenzo Librandi, Mar 11 2011
a(n) = (4*11^(n+2) - 5*10^(n+2) + 6^(n+2))/20. - Yahia Kahloune, Jun 30 2013
In general, for the expansion of 1/((1-r*x)(1-s*x)(1-t*x)) with t > s > r, we have the formula: a(n) = ((s-r)*t^(n+2) - (t-r)*s^(n+2) + (t-s)*r^(n+2))/((s-r)*(t-r)*(t-s)). - Yahia Kahloune, Sep 09 2013
a(0) = 1, a(1) = 27, a(2) = 493, a(n) = 27*a(n-1) - 236*a(n-2) + 660*a(n-3). - Harvey P. Dale, Oct 01 2014
From Elmo R. Oliveira, Mar 26 2025: (Start)
E.g.f.: exp(6*x)*(484*exp(5*x) - 500*exp(4*x) + 36)/20.
a(n) = A016174(n+1) - A016173(n+1). (End)

Extensions

More terms from Elmo R. Oliveira, Mar 26 2025

A020766 Expansion of g.f. 1/((1-6*x)*(1-11*x)*(1-12*x)).

Original entry on oeis.org

1, 29, 571, 9521, 144907, 2083865, 28847827, 388709777, 5134091323, 66784487561, 858403625443, 10928093824193, 138039056180299, 1732402968047417, 21624191213455219, 268679676312195569, 3325242136114316635, 41014868784078912233, 504410121626681853955, 6187470727275006236705
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1-6x)(1-11x)(1-12x)),{x,0,20}],x] (* or *) LinearRecurrence[{29,-270,792},{1,29,571},20] (* Harvey P. Dale, Jun 13 2015 *)

Formula

a(n) = 23*a(n-1) - 132*a(n-2) + 6^n; a(0)=1, a(1)=29. - Vincenzo Librandi, Mar 11 2011
a(n) = 6*6^n/5 - 121*11^n/5 + 24*12^n. - R. J. Mathar, Jul 01 2013
a(n) = 29*a(n-1) - 270*a(n-2) + 792*a(n-3); a(0)=1, a(1)=29, a(2)=571. - Harvey P. Dale, Jun 13 2015
From Elmo R. Oliveira, Mar 26 2025: (Start)
E.g.f.: exp(6*x)*(6 - 121*exp(5*x) + 120*exp(6*x))/5.
a(n) = A016175(n+1) - A016174(n+1). (End)

Extensions

More terms from Elmo R. Oliveira, Mar 26 2025

A102765 Array read by antidiagonals: T(n, k) = ((n+4)^k-(n-1)^k)/5.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 1, 5, 13, 0, 1, 7, 25, 51, 0, 1, 9, 43, 125, 205, 0, 1, 11, 67, 259, 625, 819, 0, 1, 13, 97, 477, 1555, 3125, 3277, 0, 1, 15, 133, 803, 3355, 9331, 15625, 13107, 0, 1, 17, 175, 1261, 6505, 23517, 55987, 78125, 52429, 0, 1, 19, 223, 1875, 11605
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.net) and Gary W. Adamson, Feb 10 2005

Keywords

Comments

Consider a 5x5 matrix M =
[n, 1, 1, 1, 1]
[1, n, 1, 1, 1]
[1, 1, n, 1, 1]
[1, 1, 1, n, 1]
[1, 1, 1, 1, n].
The n-th row of the array contains the values of the non diagonal elements of M^k, k=0,1,.... (Corresponding diagonal entry = non diagonal entry + (n-1)^k.)
For row r we have polynomial ((r+4)^n-(r-1)^n)/5. Corresponding g.f.s: x/((1-(r-1)x)(1-(r+4)x))
If r(n) denotes a row sequence, r(n+1)/r(n) converges to n+4.
Triangle T(n, k) = (4^(n-k-1)-(-1)^(n-k-1))/5*(binomial(k+(n-k-1),n-k-1)) gives coefficients for polynomials for the columns of the array. First four polynomial are:
1
3 + 2*k
13 + 9*k + 3*k^2
51 + 52*k + 18*k^2 + 4*k^3
...

Examples

			Array begins:
  0, 1,  3, 13,  51,  205, ...
  0, 1,  5, 25, 125,  625, ...
  0, 1,  7, 43, 259, 1555, ...
  0, 1,  9, 67, 477, 3355, ...
  0, 1, 11, 97, 803, 6505, ...
  ...
		

Crossrefs

Cf. A015521 (for n=0), A000351 (for n=1), A003464 (for n=2), A016130 (for n=3), A016140 (for n=4), A016153 (for n=5), A016164 (for n=6), A016174 (for n=7), A016184 (for n=8), A015441 (for n=-1), A091005 (for n=-2).

Programs

  • PARI
    MM(n,N)=local(M);M=matrix(n,n);for(i=1,n, for(j=1,n,if(i==j,M[i,j]=N,M[i,j]=1)));M
    for(k=0,10, for(i=0,10,print1((MM(5,k)^i)[1,2],","));print())
    
  • PARI
    p(n,k)=((n+4)^k-(n-1)^k)/5
    for(k=0,10, for(i=0,10,print1(p(k,i),","));print())
    
  • PARI
    for(k=0,10, for(i=0,10,print1(polcoeff(x/((1-(k-1)*x)*(1-(k+4)*x)),i),","));print())
Showing 1-4 of 4 results.