A016177 a(n) = 8^n - 7^n.
0, 1, 15, 169, 1695, 15961, 144495, 1273609, 11012415, 93864121, 791266575, 6612607849, 54878189535, 452866803481, 3719823438255, 30436810578889, 248242046141055, 2019169299698041, 16385984911571535, 132716292890482729, 1073129238309234975, 8664826172771491801
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (15,-56).
Programs
-
Magma
[8^n -7^n: n in [0..40]]; // G. C. Greubel, Nov 29 2024
-
Mathematica
Table[8^n - 7^n, {n, 0, 20}] (* Harvey P. Dale, Jan 31 2011 *)
-
PARI
a(n)=8^n-7^n \\ Charles R Greathouse IV, Sep 28 2015
-
Python
def A016177(n): return pow(8,n) - pow(7,n) print([A016177(n) for n in range(41)]) # G. C. Greubel, Nov 29 2024
Formula
G.f.: x/((1-7x)*(1-8x)).
a(n) = numerator(f(n-1)) where f(n) = Integral_{x=0..1/4} (1-x/2)^n dx. And denominator(f(n)) = 4*(n+1)*8^n. - Al Hakanson (hawkuu(AT)excite.com), Feb 22 2004 [corrected by Michel Marcus, Dec 23 2022]
a(n) = 15*a(n-1) - 56*a(n-2), n > 1. - Philippe Deléham, Jan 01 2009
E.g.f.: e^(8*x) - e^(7*x). - Mohammad K. Azarian, Jan 14 2009
a(n) = 8*a(n-1) + 7^(n-1), a(0)=0. - Vincenzo Librandi, Feb 09 2011
Comments