A016766 a(n) = (3*n)^2.
0, 9, 36, 81, 144, 225, 324, 441, 576, 729, 900, 1089, 1296, 1521, 1764, 2025, 2304, 2601, 2916, 3249, 3600, 3969, 4356, 4761, 5184, 5625, 6084, 6561, 7056, 7569, 8100, 8649, 9216, 9801, 10404, 11025, 11664, 12321, 12996, 13689, 14400, 15129, 15876, 16641, 17424
Offset: 0
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..200
- John Elias, Illustration of initial terms.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[(3*n)^2 : n in [0..50]]; // Wesley Ivan Hurt, Sep 24 2014
-
Maple
A016766:=n->(3*n)^2: seq(A016766(n), n=0..50); # Wesley Ivan Hurt, Sep 24 2014
-
Mathematica
(3Range[0, 49])^2 (* Alonso del Arte, Sep 24 2014 *)
-
Maxima
A016766(n):=(3*n)^2$ makelist(A016766(n),n,0,20); /* Martin Ettl, Nov 12 2012 */
-
PARI
a(n)=9*n^2 \\ Charles R Greathouse IV, Sep 28 2015
Formula
a(n) = 9*n^2 = 9*A000290(n). - Omar E. Pol, Dec 11 2008
a(n) = 3*A033428(n). - Omar E. Pol, Dec 13 2008
a(n) = a(n-1) + 9*(2*n-1) for n > 0, a(0)=0. - Vincenzo Librandi, Nov 19 2010
From Wesley Ivan Hurt, Sep 24 2014: (Start)
G.f.: 9*x*(1 + x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n >= 3.
From Amiram Eldar, Jan 25 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/54.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/108.
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/3)/(Pi/3).
Product_{n>=1} (1 - 1/a(n)) = sinh(Pi/2)/(Pi/2) = 3*sqrt(3)/(2*Pi) (A086089). (End)
a(n) = A051624(n) + 8*A000217(n). In general, if P(k,n) = the k-th n-gonal number, then (k*n)^2 = P(k^2 + 3,n) + (k^2 - 1)*A000217(n). - Charlie Marion, Mar 09 2022
From Elmo R. Oliveira, Nov 30 2024: (Start)
E.g.f.: 9*x*(1 + x)*exp(x).
Extensions
More terms from Zerinvary Lajos, May 30 2006
Comments