A017137 a(n) = 8*n + 6.
6, 14, 22, 30, 38, 46, 54, 62, 70, 78, 86, 94, 102, 110, 118, 126, 134, 142, 150, 158, 166, 174, 182, 190, 198, 206, 214, 222, 230, 238, 246, 254, 262, 270, 278, 286, 294, 302, 310, 318, 326, 334, 342, 350, 358, 366, 374, 382, 390, 398, 406, 414, 422, 430
Offset: 0
Examples
G.f. = 6 + 14*x + 22*x^2 + 30*x^3 + 38*x^4 + 46*x^5 + 54*x^6 + 62*x^7 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Tanya Khovanova, Recursive Sequences.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
Haskell
a017137 = (+ 6) . (* 8) -- Reinhard Zumkeller, Jul 05 2013
-
Magma
[8*n+6: n in [0..60]]; // Vincenzo Librandi, Jun 07 2011
-
Maple
A017137:=n->8*n+6; seq(A017137(n), n=0..50); # Wesley Ivan Hurt, May 13 2014
-
Mathematica
Range[6, 1000, 8] (* Vladimir Joseph Stephan Orlovsky, May 27 2011 *) 8Range[0,60]+6 (* or *) LinearRecurrence[{2,-1},{6,14},60] (* Harvey P. Dale, Nov 14 2021 *)
-
PARI
a(n) = 8*n+6; \\ Michel Marcus, Sep 17 2015
-
PARI
Vec((6+2*x)/(1-x)^2 + O(x^100)) \\ Altug Alkan, Oct 23 2015
Formula
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jun 07 2011
A089911(3*a(n)) = 4. - Reinhard Zumkeller, Jul 05 2013
From Michael Somos, May 15 2014: (Start)
G.f.: (6 + 2*x)/(1 - x)^2.
E.g.f.: (6 + 8*x)*exp(x). (End)
Sum_{n>=0} (-1)^n/a(n) = (Pi + log(3-2*sqrt(2)))/(8*sqrt(2)). - Amiram Eldar, Dec 11 2021
a(n) = A016825(2*n+1). - Elmo R. Oliveira, Apr 12 2025
Comments