A017282 a(n) = (10*n + 1)^2.
1, 121, 441, 961, 1681, 2601, 3721, 5041, 6561, 8281, 10201, 12321, 14641, 17161, 19881, 22801, 25921, 29241, 32761, 36481, 40401, 44521, 48841, 53361, 58081, 63001, 68121, 73441, 78961, 84681, 90601, 96721, 103041, 109561, 116281, 123201
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[(10*n+1)^2: n in [0..35]]; // Vincenzo Librandi, Jul 30 2011
-
Mathematica
(* Programs from Michael De Vlieger, Mar 30 2017 *) Table[(10 n+1)^2, {n, 0, 35}] FoldList[#1 + 200 #2 - 80 &, 1, Range@ 35] CoefficientList[Series[(1+118x+81x^2)/(1-x)^3, {x,0,35}], x] (* End *) LinearRecurrence[{3,-3,1},{1,121,441},40] (* Harvey P. Dale, Sep 21 2017 *)
-
PARI
for(n=0, 35, print1((10*n+1)^2", ")); \\ Bruno Berselli, Jul 30 2011
-
SageMath
[(10*n+1)^2 for n in range(51)] # G. C. Greubel, Dec 24 2022
Formula
G.f.: (1+118*x+81*x^2)/(1-x)^3. - Bruno Berselli, Jul 30 2011
a(n) = a(n-1) + 40*(5*n-2), n > 0; a(0)=1. - Miquel Cerda, Oct 30 2016
a(n) = A017281(n)^2. - Michel Marcus, Oct 30 2016
E.g.f.: (1 +120*x +100*x^2)*exp(x). - G. C. Greubel, Dec 24 2022
Extensions
More terms from Bruno Berselli, Jul 30 2011