A017437 a(n) = 11*n + 4.
4, 15, 26, 37, 48, 59, 70, 81, 92, 103, 114, 125, 136, 147, 158, 169, 180, 191, 202, 213, 224, 235, 246, 257, 268, 279, 290, 301, 312, 323, 334, 345, 356, 367, 378, 389, 400, 411, 422, 433, 444, 455, 466, 477, 488, 499, 510, 521, 532, 543, 554, 565, 576, 587
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
GAP
List([0..60], n-> 11*n+4); # G. C. Greubel, Sep 18 2019
-
Magma
[11*n+4: n in [0..60]]; // Vincenzo Librandi, Sep 18 2011
-
Maple
seq(11*n+4, n=0..60); # G. C. Greubel, Sep 18 2019
-
Mathematica
Range[4, 1000, 11] (* Vladimir Joseph Stephan Orlovsky, May 28 2011 *) LinearRecurrence[{2,-1},{4,15},60] (* Harvey P. Dale, May 19 2012 *)
-
PARI
a(n)=11*n+4 \\ Charles R Greathouse IV, Oct 07 2015
-
Sage
list(range(4, 600, 11)) # Zerinvary Lajos, May 21 2009
Formula
a(0)=4, a(1)=15, a(n) = 2*a(n-1) - a(n-2). - Harvey P. Dale, May 19 2012
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (4 + 7*x)/(1-x)^2.
E.g.f.: (4 + 11*x)*exp(x). (End)
Comments