A017593 a(n) = 12*n + 6.
6, 18, 30, 42, 54, 66, 78, 90, 102, 114, 126, 138, 150, 162, 174, 186, 198, 210, 222, 234, 246, 258, 270, 282, 294, 306, 318, 330, 342, 354, 366, 378, 390, 402, 414, 426, 438, 450, 462, 474, 486, 498, 510, 522, 534, 546, 558, 570, 582, 594, 606, 618, 630, 642
Offset: 0
Links
- P. Fortuny, J. M. Grau, A. M. Oller-Marcén and I. F. Rúa, On power sums of matrices over a finite commutative ring, arXiv:1505.08132 [math.RA], 2015.
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- William A. Stein, Dimensions of the spaces S_k^{new}(Gamma_0(N)).
- William A. Stein, The modular forms database.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Mathematica
12 Range[0, 200] + 6 (* Vladimir Joseph Stephan Orlovsky, Feb 19 2011 *) LinearRecurrence[{2, -1}, {6, 18}, 60] (* Harvey P. Dale, Aug 20 2014 *)
-
PARI
a(n)=12*n+6 \\ Charles R Greathouse IV, Sep 24 2015
-
Sage
[i+6 for i in range(645) if gcd(i,12) == 12] # Zerinvary Lajos, May 21 2009
Formula
A030133(a(n)) = 9. - Reinhard Zumkeller, Jul 04 2007
a(n) = 24*n - a(n-1) with n > 0, a(0)=6. - Vincenzo Librandi, Nov 19 2010
a(0)=6, a(1)=18; for n > 1, a(n) = 2*a(n-1) - a(n-2). - Harvey P. Dale, Aug 20 2014
G.f.: 6*(1+x)/(1-x)^2. - Wolfdieter Lang, Oct 27 2020
Sum_{n>=0} (-1)^n/a(n) = Pi/24 (A019691). - Amiram Eldar, Dec 12 2021
From Amiram Eldar, Nov 24 2024: (Start)
Product_{n>=0} (1 - (-1)^n/a(n)) = sqrt(2) * sin(5*Pi/24).
Product_{n>=0} (1 + (-1)^n/a(n)) = sqrt(2) * cos(5*Pi/24). (End)
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: 6*exp(x)*(1 + 2*x).
Extensions
Typos in sequence (270 was 2,70 and 510 was 5,10) fixed by Peter Luschny, Dec 14 2009
Comments