A017665 Numerator of sum of reciprocals of divisors of n.
1, 3, 4, 7, 6, 2, 8, 15, 13, 9, 12, 7, 14, 12, 8, 31, 18, 13, 20, 21, 32, 18, 24, 5, 31, 21, 40, 2, 30, 12, 32, 63, 16, 27, 48, 91, 38, 30, 56, 9, 42, 16, 44, 21, 26, 36, 48, 31, 57, 93, 24, 49, 54, 20, 72, 15, 80, 45, 60, 14, 62, 48, 104, 127, 84, 24, 68, 63, 32, 72, 72, 65, 74, 57
Offset: 1
Examples
1, 3/2, 4/3, 7/4, 6/5, 2, 8/7, 15/8, 13/9, 9/5, 12/11, 7/3, 14/13, 12/7, 8/5, 31/16, ...
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), 4th formula.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Paul A. Weiner, The abundancy ratio, a measure of perfection, Math. Mag. 73 (4) (2000) 307-310.
- Eric Weisstein's World of Mathematics, Abundancy.
Crossrefs
Programs
-
Haskell
import Data.Ratio ((%), numerator) a017665 = numerator . sum . map (1 %) . a027750_row -- Reinhard Zumkeller, Apr 06 2012
-
Magma
[Numerator(DivisorSigma(1,n)/n): n in [1..50]]; // G. C. Greubel, Nov 08 2018
-
Maple
with(numtheory): seq(numer(sigma(n)/n), n=1..74) ; # Zerinvary Lajos, Jun 04 2008
-
Mathematica
Numerator[DivisorSigma[-1,Range[80]]] (* Harvey P. Dale, May 31 2013 *) Table[Numerator[DivisorSigma[1, n]/n], {n, 1, 50}] (* G. C. Greubel, Nov 08 2018 *)
-
PARI
a(n)=sigma(n)/gcd(n, sigma(n)) \\ Charles R Greathouse IV, Feb 11 2011
-
PARI
a(n)=numerator(sigma(n,-1)) \\ Charles R Greathouse IV, Apr 04 2011
-
Python
from math import gcd from sympy import divisor_sigma def A017665(n): return (m:=divisor_sigma(n))//gcd(m,n) # Chai Wah Wu, Mar 20 2023
Formula
a(n) = sigma(n)/gcd(n, sigma(n)). - Jon Perry, Jun 29 2003
Dirichlet g.f.: zeta(s)*zeta(s+1) [for fraction A017665/A017666]. - Franklin T. Adams-Watters, Sep 11 2005
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017666(k) = Pi^2/6 (A013661). - Amiram Eldar, Nov 21 2022
Comments