A017666 Denominator of sum of reciprocals of divisors of n.
1, 2, 3, 4, 5, 1, 7, 8, 9, 5, 11, 3, 13, 7, 5, 16, 17, 6, 19, 10, 21, 11, 23, 2, 25, 13, 27, 1, 29, 5, 31, 32, 11, 17, 35, 36, 37, 19, 39, 4, 41, 7, 43, 11, 15, 23, 47, 12, 49, 50, 17, 26, 53, 9, 55, 7, 57, 29, 59, 5, 61, 31, 63, 64, 65, 11, 67, 34, 23, 35, 71, 24, 73, 37, 75, 19
Offset: 1
Examples
1, 3/2, 4/3, 7/4, 6/5, 2, 8/7, 15/8, 13/9, 9/5, 12/11, 7/3, 14/13, 12/7, 8/5, 31/16, ...
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), 4th formula.
Links
- T. D. Noe, Table of n, a(n) for n=1..10000
- Eric Weisstein's World of Mathematics, Abundancy
Programs
-
Haskell
import Data.Ratio ((%), denominator) a017666 = denominator . sum . map (1 %) . a027750_row -- Reinhard Zumkeller, Apr 06 2012
-
Magma
[Denominator(DivisorSigma(1,n)/n): n in [1..50]]; // G. C. Greubel, Nov 08 2018
-
Maple
with(numtheory): seq(denom(sigma(n)/n), n=1..76) ; # Zerinvary Lajos, Jun 04 2008
-
Mathematica
Table[Denominator[DivisorSigma[-1, n]], {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2011 *) Table[Denominator[DivisorSigma[1, n]/n], {n, 1, 50}] (* G. C. Greubel, Nov 08 2018 *)
-
PARI
a(n) = denominator(sigma(n)/n); \\ Michel Marcus, Sep 23 2014
-
Python
from math import gcd from sympy import divisor_sigma def A017666(n): return n//gcd(divisor_sigma(n),n) # Chai Wah Wu, Mar 21 2023
Extensions
More terms from Labos Elemer, Aug 14 2002
Comments