cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 124 results. Next

A341606 Square array A(n,k) = A017666(A246278(n,k)), read by falling antidiagonals; denominator of abundancy index as applied onto prime shift array A246278.

Original entry on oeis.org

2, 4, 3, 1, 9, 5, 8, 5, 25, 7, 5, 27, 35, 49, 11, 3, 21, 125, 77, 121, 13, 7, 15, 55, 343, 143, 169, 17, 16, 11, 175, 13, 1331, 221, 289, 19, 6, 81, 65, 539, 187, 2197, 323, 361, 23, 10, 75, 625, 119, 1573, 247, 4913, 437, 529, 29, 11, 63, 245, 2401, 209, 2873, 391, 6859, 667, 841, 31
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Comments

See also comments and examples in A341605.

Examples

			The top left corner of the array:
   k=  1    2    3      4    5      6    7       8      9     10   11      12
  2k=  2    4    6      8   10     12   14      16     18     20   22      24
    |
----+--------------------------------------------------------------------------
  1 |  2,   4,   1,     8,   5,     3,   7,     16,     6,    10,  11,      2,
  2 |  3,   9,   5,    27,  21,    15,  11,     81,    75,    63,  39,      9,
  3 |  5,  25,  35,   125,  55,   175,  65,    625,   245,   275,  85,    875,
  4 |  7,  49,  77,   343,  13,   539, 119,   2401,   121,    91, 133,   3773,
  5 | 11, 121, 143,  1331, 187,  1573, 209,  14641,  1859,  2057, 253,  17303,
  6 | 13, 169, 221,  2197, 247,  2873, 299,  28561,  3757,  3211, 377,   2197,
  7 | 17, 289, 323,  4913, 391,  5491, 493,  83521,  6137,  6647, 527,  93347,
  8 | 19, 361, 437,  6859, 551,  8303, 589, 130321, 10051, 10469,  37, 157757,
  9 | 23, 529, 667, 12167, 713, 15341, 851, 279841, 19343, 16399, 943, 352843,
etc.
Arrays A341607 and A341608 give the largest prime factor (A006530) and the number of prime factors with multiplicity (A001222) of these terms. There are nonmonotonicities in both, for example, in columns 11, 12 and 14. This is illustrated below:
For column 11, with successive prime shifts of 22, we obtain:
     n sigma(n)             sigma(n)/n in lowest terms,
                            A017665(n)/A017666(n)
---------------------------------------------------------------------------
    22   36 = (2^2 * 3^2),        18/11  = (2 * 3^2)/11
    39   56 = (2^3 * 7),          56/39  = (2^3 * 7)/(3 * 13)
    85  108 = (2^2 * 3^3),       108/85  = (2^2 * 3^3)/(5 * 17)
   133  160 = (2^5 * 5),         160/133 = (2^5 * 5)/(7 * 19)
   253  288 = (2^5 * 3^2),       288/253 = (2^5 * 3^2)/(11 * 23)
   377  420 = (2^2 * 3 * 5 * 7), 420/377 = (2^2 * 3 * 5 * 7)/(13 * 29)
   527  576 = (2^6 * 3^2),       576/527 = (2^6 * 3^2)/(17 * 31)
   703  760 = (2^3 * 5 * 19),     40/37  = (2^3 * 5)/37 <-- A001222 drops!
   943 1008 = (2^4 * 3^2 * 7),  1008/943 = (2^4 * 3^2 * 7)/(23 * 41)
-
On the second last row, the denominator of 760/703 (= 40/37) has only one prime factor (instead of two), namely 37, because sigma(703) has 19 as its divisor, which otherwise would be present in the denominator.
-
For column 12, with successive prime shifts of 24, we obtain:
      n sigma(n)                        sigma(n)/n
---------------------------------------------------------------------------
     24     60 = (2^2 * 3 * 5),            5/2     = (5)/(2)
    135    240 = (2^4 * 3 * 5),           16/9     = (2^4)/(3^2)
    875   1248 = (2^5 * 3 * 13),        1248/875   = (2^5 * 3 * 13)/(5^3 * 7)
   3773   4800 = (2^6 * 3 * 5^2),       4800/3773  = (2^6 * 3 * 5^2)/(7^3 * 11)
  17303  20496 = (2^4 *3 *7 *61),      20496/17303 = (2^4 *3 *7 *61)/(11^3 * 13)
  37349  42840 = (2^3 *3^2 *5 *7 *17),  2520/2197  = (2^3 * 3^2 *5 *7)/(13^3) !!
  93347 104400 = (2^4 *3^2 *5^2 *29), 104400/93347 = (2^4 *3^2 *5^2 *29)/(17^3 *19)
-
On the second last row, the denominator of 42840/37349 (= 2520/2197) has no prime factor 17 (which would be otherwise present), because sigma(37349) has it as its divisor.
-
For column 14, with successive prime shifts of 28, we obtain:
     n sigma(n)               sigma(n)/n
---------------------------------------------------------------------------
    28   56 = (2^3 * 7),             2/1,
    99  156 = (2^2 * 3 * 13),       52/33   = (2^2 * 13)/(3 * 11)
   325  434 = (2 * 7 * 31),        434/325  = (2 * 7 * 31)/(5^2 * 13)
   833 1026 = (2 * 3^3 * 19),     1026/833  = (2 * 3^3 * 19)/(7^2 * 17)
  2299 2660 = (2^2 * 5 * 7 * 19),  140/121  = (2^2 * 5 * 7)/(11^2) <-- !!
  3887 4392 = (2^3 * 3^2 * 61),   4392/3887 = (2^3 * 3^2 * 61)/(13^2 * 23)
On the second last row, the denominator of 2660/2299 (= 140/121) has no prime factor 19 (which would be otherwise present), because sigma(2299) has it as its divisor.
Note that if A006530 does not grow, then certainly A001222 drops.
		

Crossrefs

Cf. A341605 (numerators), A341626 (numerators of the columnwise first quotients of A341605/A341606), A341627 (and their denominators), A355925, A355927.
Cf. A341607 (the largest prime factor in this array), A341608 (the number of prime factors, with multiplicity).
Cf. also A007691, A341523, A341524.

Programs

  • PARI
    up_to = 105;
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A017666(n) = denominator(sigma(n)/n);
    A341606sq(row,col) = A017666(A246278sq(row,col));
    A341606list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A341606sq(col,(a-(col-1))))); (v); };
    v341606 = A341606list(up_to);
    A341606(n) = v341606[n];

Formula

A(n, k) = A017666(A246278(n, k)).
A(n, k) = A246278(n, k) / A355925(n, k). - Antti Karttunen, Jul 22 2022

A245775 Numbers k such that A017666(k) = denominator(sigma(k)/k) = 3.

Original entry on oeis.org

3, 12, 84, 234, 270, 1080, 1488, 1638, 6048, 6552, 24384, 35640, 199584, 435708, 2142720, 4713984, 12999168, 18506880, 36197280, 100651008, 208565280, 240589440, 275890944, 299980800, 470564640, 3899750400, 4138364160, 6039429120, 13286744064, 17827568640
Offset: 1

Views

Author

Jaroslav Krizek, Aug 26 2014

Keywords

Comments

Numbers n such that sigma(n)/n = k + 1/3 with integer k are terms of this sequence (3, 12, 234, 1080, 6048, 6552, 435708, 4713984, ...).
Subsequence of A245774 (numbers n such that n divides 3*sigma(n)).
Union of A160320 (sigma(n)/n = k + 1/3) and A160321 (sigma(n)/n = k + 2/3). - Michel Marcus, Aug 27 2014

Examples

			Number 12 is in sequence because A017666(12) = 3.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..3000000] | Denominator((SumOfDivisors(n))/n) eq 3]
    
  • PARI
    for(n=1,10^7,if(denominator(sigma(n)/n)==3,print1(n,", "))) \\ Derek Orr, Aug 26 2014

Extensions

More terms from A160320 and A160321 by Michel Marcus, Aug 27 2014

A341607 Square array A(n,k) = A006530(A017666(A246278(n,k))), read by falling antidiagonals.

Original entry on oeis.org

2, 2, 3, 1, 3, 5, 2, 5, 5, 7, 5, 3, 7, 7, 11, 3, 7, 5, 11, 11, 13, 7, 5, 11, 7, 13, 13, 17, 2, 11, 7, 13, 11, 17, 17, 19, 3, 3, 13, 11, 17, 13, 19, 19, 23, 5, 5, 5, 17, 13, 19, 17, 23, 23, 29, 11, 7, 7, 7, 19, 17, 23, 19, 29, 29, 31, 2, 13, 11, 11, 11, 23, 19, 29, 23, 31, 31, 37, 13, 3, 17, 13, 13, 13, 29, 23, 31, 29, 37, 37, 41
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Examples

			The top left corner of the array:
   n=   1   2   3   4   5   6   7   8   9  10  11  12   13  14  15  16   17
  2n=   2   4   6   8  10  12  14  16  18  20  22  24   26  28  30  32   34
-----+----------------------------------------------------------------------
   1 |  2,  2,  1,  2,  5,  3,  7,  2,  3,  5, 11,  2,  13,  1,  5,  2,  17,
   2 |  3,  3,  5,  3,  7,  5, 11,  3,  5,  7, 13,  3,  17, 11,  7,  3,  19,
   3 |  5,  5,  7,  5, 11,  7, 13,  5,  7, 11, 17,  7,  19, 13, 11,  5,  23,
   4 |  7,  7, 11,  7, 13, 11, 17,  7, 11, 13, 19, 11,  23, 17, 13,  7,  29,
   5 | 11, 11, 13, 11, 17, 13, 19, 11, 13, 17, 23, 13,  29,*11, 17, 11,  31,
   6 | 13, 13, 17, 13, 19, 17, 23, 13, 17, 19, 29,*13,  31, 23, 19, 13,  37,
   7 | 17, 17, 19, 17, 23, 19, 29, 17, 19, 23, 31, 19,  37, 29, 23, 17,  41,
   8 | 19, 19, 23, 19, 29, 23, 31, 19, 23, 29, 37, 23,  41, 31, 29, 19,  43,
   9 | 23, 23, 29, 23, 31, 29, 37, 23, 29, 31, 41, 29,  43, 37, 31, 23,  47,
  10 | 29, 29, 31, 29, 37, 31, 41, 29, 31, 37, 43, 31,  47, 41, 37, 29,  53,
  11 | 31, 31, 37, 31, 41, 37, 43, 31, 37, 41, 47,*31,  53, 43, 41, 31,  59,
  12 | 37, 37, 41, 37, 43, 41, 47, 37, 41, 43, 53, 41,  59, 47, 43, 37,  61,
  13 | 41, 41, 43, 41, 47, 43, 53, 41, 43, 47, 59, 43,  61, 53, 47, 41,  67,
  14 | 43, 43, 47, 43, 53, 47, 59, 43, 47, 53, 61, 47,  67, 59, 53, 43,  71,
  15 | 47, 47, 53, 47, 59, 53, 61, 47, 53, 59, 67, 53,  71, 47, 59, 47,  73,
  16 | 53, 53, 59, 53, 61, 59, 67, 53, 59, 61, 71, 59,  73, 67, 61, 53,  79,
  17 | 59, 59, 61, 59, 67, 61, 71, 59, 61, 67, 73, 61,  79, 71, 67, 59,  83,
  18 | 61, 61, 67, 61, 71, 67, 73, 61, 67, 71, 79, 67,  83, 73, 71, 61,  89,
  19 | 67, 67, 71, 67, 73, 71, 79, 67, 71, 73, 83, 71,  89, 79, 73, 67,  97,
  20 | 71, 71, 73, 71, 79, 73, 83, 71, 73, 79, 89, 73,  97, 83, 79, 71, 101,
  21 | 73, 73, 79, 73, 83, 79, 89, 73, 79, 83, 97, 79, 101, 89, 83, 73, 103,
etc.
Positions where columns are not strictly monotonic are marked with an asterisk (*). See the example section of A341606 for further elaboration.
		

Crossrefs

Programs

  • PARI
    up_to = 105;
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A006530(n) = if(n>1, vecmax(factor(n)[, 1]), 1);
    A017666(n) = denominator(sigma(n)/n);
    A341607sq(row,col) = A006530(A017666(A246278sq(row,col)));
    A341607list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A341607sq(col,(a-(col-1))))); (v); };
    v341607 = A341607list(up_to);
    A341607(n) = v341607[n];

Formula

A(n,k) = A006530(A341606(n, k)) = A006530(A017666(A246278(n,k))).

A249670 a(n) = A017665(n)*A017666(n).

Original entry on oeis.org

1, 6, 12, 28, 30, 2, 56, 120, 117, 45, 132, 21, 182, 84, 40, 496, 306, 78, 380, 210, 672, 198, 552, 10, 775, 273, 1080, 2, 870, 60, 992, 2016, 176, 459, 1680, 3276, 1406, 570, 2184, 36, 1722, 112, 1892, 231, 390, 828, 2256, 372, 2793, 4650, 408, 1274, 2862
Offset: 1

Views

Author

Michel Marcus, Nov 03 2014

Keywords

Comments

If n is a k-multiperfect, then a(n) = k.

Crossrefs

Cf. A000203 (sigma(n)).
Cf. A017665/A017666 (abundancy of n).
Cf. A009194 (gcd(n, sigma(n))), A064987 (n*sigma(n)).

Programs

  • Haskell
    a249670 n = div (n * s) (gcd n s ^ 2)
     where s = sum (filter (\k -> mod n k == 0) [1..n])
    -- Allan C. Wechsler, Mar 31 2023
  • Mathematica
    a249670[n_Integer] := Numerator[DivisorSigma[-1, n]]*Denominator[DivisorSigma[-1, n]]; a249670 /@ Range[80] (* Michael De Vlieger, Nov 10 2014 *)
  • PARI
    a(n) = my(ab = sigma(n)/n); numerator(ab)*denominator(ab);
    

Formula

a(n) = A064987(n)/A009194(n)^2.
a(A000396(n)) = 2 (perfect).
a(A005820(n)) = 3 (tri-perfect).
For p prime, a(p) = p*(p+1).

A341524 Number of prime factors in A017666(n), counted with multiplicity: a(n) = bigomega(n) - bigomega(gcd(n, sigma(n))).

Original entry on oeis.org

0, 1, 1, 2, 1, 0, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 3, 0, 1, 1, 1, 5, 1, 1, 2, 4, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 3, 2, 3, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 3, 6, 2, 1, 1, 2, 1, 2, 1, 4, 1, 1, 3, 1, 2, 1, 1, 4, 4, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 3, 1, 3, 2, 4, 1, 1, 1, 3, 2, 1, 1, 3, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 0
Offset: 1

Views

Author

Antti Karttunen, Feb 17 2021

Keywords

Crossrefs

Cf. A007691 (positions of zeros).
Cf. A341608 (applied onto prime shift array A246278).

Programs

  • Mathematica
    Table[PrimeOmega[n] - PrimeOmega[GCD[n, DivisorSigma[1, n]]], {n, 1, 100}] (* Amiram Eldar, Feb 17 2021 *)
  • PARI
    A341524(n) = (bigomega(n) - bigomega(gcd(n, sigma(n))));

Formula

a(n) = A001222(A017666(n)).
a(n) = A001222(n) - A341523(n).

A374196 a(n) is the minimum value of A017666 that it obtains among divisors of n larger than 1. By convention a(1) = 1.

Original entry on oeis.org

1, 2, 3, 2, 5, 1, 7, 2, 3, 2, 11, 1, 13, 2, 3, 2, 17, 1, 19, 2, 3, 2, 23, 1, 5, 2, 3, 1, 29, 1, 31, 2, 3, 2, 5, 1, 37, 2, 3, 2, 41, 1, 43, 2, 3, 2, 47, 1, 7, 2, 3, 2, 53, 1, 5, 1, 3, 2, 59, 1, 61, 2, 3, 2, 5, 1, 67, 2, 3, 2, 71, 1, 73, 2, 3, 2, 7, 1, 79, 2, 3, 2, 83, 1, 5, 2, 3, 2, 89, 1, 7, 2, 3, 2, 5, 1, 97, 2, 3, 2
Offset: 1

Views

Author

Antti Karttunen, Jul 07 2024

Keywords

Crossrefs

Cf. A000203, A017666, A374198 (indices of 1's in this sequence).
Cf. also A374204.

Programs

  • PARI
    A374196(n) = { my(m=0,x); fordiv(n,d,if(d>1, x = denominator(sigma(d)/d); if(!m || x
    				

Formula

a(1) = 1, and for n > 1, a(n) = Min_{d|n, d>1} A017666(d).

A262432 Regular triangle read by rows: T(n, k) gives the number of times that the denominator of sigma(x,-1) (A017666) is equal to k when x goes from 1 to n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 2, 0, 1, 1, 1, 0, 2, 1, 1, 1, 2, 0, 1, 1, 1, 0, 1, 2, 1, 2, 1, 2, 0, 1, 1, 1, 0, 1, 0, 2, 1, 2, 1, 2, 0, 1, 1, 1, 0, 1, 0, 1
Offset: 1

Views

Author

Michel Marcus, Sep 22 2015

Keywords

Comments

The sum of terms of the n-th row is n.
T(n, n) = 1 when n is in A014567.
T(n, n) = 0 when n is in A069059.
T(n, 1) increases when n is a multiperfect number A007691.
For a given k, the first index n for which T(n,k) = 1 is A162657(k).

Examples

			The first 6 terms of A017666 are 1, 2, 3, 4, 5, 1 where 1 appears twice, 2 to 5 appear once and 6 is absent; giving the 6th row: 2, 1, 1, 1, 1, 0.
Triangle starts
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 1, 1, 1, 1;
2, 1, 1, 1, 1, 0;
2, 1, 1, 1, 1, 0, 1;
2, 1, 1, 1, 1, 0, 1, 1;
2, 1, 1, 1, 1, 0, 1, 1, 1;
2, 1, 1, 1, 2, 0, 1, 1, 1, 0;
...
		

Crossrefs

Programs

  • Mathematica
    Table[Length@ Select[Range@ n, Denominator[DivisorSigma[-1, #]] == k &], {n, 13}, {k, n}] // Flatten (* Michael De Vlieger, Sep 22 2015 *)
  • PARI
    tabl(nn) = {vds = vector(nn, n, denominator(sigma(n,-1))); for (n=1, nn, vin = vector(n, k, vds[k]); rown = vector(n, k, #select(x->x==k, vin)); for(k=1, n, print1(rown[k], ", ")); print(););}

A324395 a(n) = A017666(A005940(1+n)), where A005940 is the Doudna sequence and A017666(n) = n/gcd(n,sigma(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 9, 8, 7, 5, 5, 3, 25, 6, 27, 16, 11, 7, 21, 10, 35, 5, 15, 2, 49, 50, 75, 36, 125, 9, 81, 32, 13, 11, 11, 1, 55, 7, 63, 4, 77, 35, 35, 5, 175, 5, 9, 12, 121, 98, 49, 100, 245, 25, 225, 24, 343, 125, 125, 27, 625, 54, 243, 64, 17, 13, 39, 11, 65, 11, 33, 7, 13, 55, 55, 3, 275, 21, 189, 40, 143, 77, 77, 5, 385, 35, 105, 1, 539
Offset: 0

Views

Author

Antti Karttunen, Mar 05 2019

Keywords

Crossrefs

Programs

  • PARI
    A324395(n) = { my(m1=1,m2=1,p=2,mp=p*p); while(n, if(!(n%2), p=nextprime(1+p); mp = p*p, m1 *= p; if(3==(n%4),mp *= p,m2 *= (mp-1)/(p-1))); n>>=1); m1/gcd(m1,m2); };
    
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A017666(n) = (n/gcd(n, sigma(n)));
    A324395(n) = A017666(A005940(1+n));

Formula

a(n) = A017666(A005940(1+n)) = A005940(1+n) / A324394(n).

A330746 Number of values of k, 1 <= k <= n, with A017666(k) = A017666(n), where A017666(n) = n/gcd(n, sigma(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 4, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 3, 1, 4, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 4, 1, 2, 1, 5, 1, 2, 1, 1, 1, 5, 1, 1, 3, 2, 1, 1, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 3, 1, 2, 3, 1, 1, 6, 4, 4, 1, 2, 4, 2, 1, 1, 1, 1, 1, 4, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 11 2020

Keywords

Comments

Ordinal transform of A017666.

Crossrefs

A left inverse of following sequences: A007691, A159907, A245775.
Cf. also A331175.

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A017666(n) = (n/gcd(n, sigma(n)));
    v330746 = ordinal_transform(vector(up_to, n, A017666(n)));
    A330746(n) = v330746[n];

Formula

For all n >= 1, a(A014567(n)) = 1.
For all n >= 1, a(A007691(n)) = a(A159907(n)) = a(A245775(n)) = n.

A379500 Square array A(n, k) = A249670(A246278(n, k)), read by falling antidiagonals; A249670(n) = A017665(n)*A017666(n), applied to the prime shift array.

Original entry on oeis.org

6, 28, 12, 2, 117, 30, 120, 40, 775, 56, 45, 1080, 1680, 2793, 132, 21, 672, 19500, 7392, 16093, 182, 84, 390, 3960, 137200, 24024, 30927, 306, 496, 176, 43400, 208, 1948584, 55692, 88723, 380, 78, 9801, 5460, 368676, 40392, 5228860, 116280, 137541, 552, 210, 9300, 488125, 17136, 2928926, 69160, 25645860, 209760, 292537, 870
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2025

Keywords

Examples

			The top left corner of the array:
k=|   1      2      3        4      5        6      7          8        9       10
2k|   2      4      6        8     10       12     14         16       18       20
--+---------------------------------------------------------------------------------
1 |   6,    28,     2,     120,    45,      21,    84,       496,      78,     210,
2 |  12,   117,    40,    1080,   672,     390,   176,      9801,    9300,    6552,
3 |  30,   775,  1680,   19500,  3960,   43400,  5460,    488125,   83790,  102300,
4 |  56,  2793,  7392,  137200,   208,  368676, 17136,   6725201,   18392,   10374,
5 | 132, 16093, 24024, 1948584, 40392, 2928926, 50160, 235793305, 4082364, 4924458,
		

Crossrefs

Elementwise product of arrays A341605 and A341606.
Cf. A036690 (leftmost column), A361468 (even bisection gives row 2).

Programs

  • PARI
    up_to = 55;
    A249670(n) = { my(ab = sigma(n)/n); numerator(ab)*denominator(ab); };
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A379500sq(row,col) = A249670(A246278sq(row,col));
    A379500list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A379500sq(col,(a-(col-1))))); (v); };
    v379500 = A379500list(up_to);
    A379500(n) = v379500[n];

Formula

A(n, k) = A341605(n, k) * A341606(n, k).
A(n, k) = A379499(n, k) / (A355925(n, k)^2).
Showing 1-10 of 124 results. Next