cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A007691 Multiply-perfect numbers: n divides sigma(n).

Original entry on oeis.org

1, 6, 28, 120, 496, 672, 8128, 30240, 32760, 523776, 2178540, 23569920, 33550336, 45532800, 142990848, 459818240, 1379454720, 1476304896, 8589869056, 14182439040, 31998395520, 43861478400, 51001180160, 66433720320, 137438691328, 153003540480, 403031236608
Offset: 1

Views

Author

Keywords

Comments

sigma(n)/n is in A054030.
Also numbers such that the sum of the reciprocals of the divisors is an integer. - Harvey P. Dale, Jul 24 2001
Luca's solution of problem 11090, which proves that for k>1 there are an infinite number of n such that n divides sigma_k(n), does not apply to this sequence. However, it is conjectured that this sequence is also infinite. - T. D. Noe, Nov 04 2007
Numbers k such that sigma(k) is divisible by all divisors of k, subsequence of A166070. - Jaroslav Krizek, Oct 06 2009
A017666(a(n)) = 1. - Reinhard Zumkeller, Apr 06 2012
Bach, Miller, & Shallit show that this sequence can be recognized in polynomial time with arbitrarily small error by a probabilistic Turing machine; that is, this sequence is in BPP. - Charles R Greathouse IV, Jun 21 2013
Conjecture: If n is such that 2^n-1 is in A066175 then a(n) is a triangular number. - Ivan N. Ianakiev, Aug 26 2013
Conjecture: Every multiply-perfect number is practical (A005153). I've verified this conjecture for the first 5261 terms with abundancy > 2 using Achim Flammenkamp's data. The even perfect numbers are easily shown to be practical, but every practical number > 1 is even, so a weak form says every even multiply-perfect number is practical. - Jaycob Coleman, Oct 15 2013
Numbers such that A054024(n) = 0. - Michel Marcus, Nov 16 2013
Numbers n such that k(n) = A229110(n) = antisigma(n) mod n = A024816(n) mod n = A000217(n) mod n = (n(n+1)/2) mod n = A142150(n). k(n) = n/2 for even n; k(n) = 0 for odd n (for number 1 and eventually odd multiply-perfect numbers n > 1). - Jaroslav Krizek, May 28 2014
The only terms m > 1 of this sequence that are not in A145551 are m for which sigma(m)/m is not a divisor of m. Conjecture: after 1, A323653 lists all such m (and no other numbers). - Antti Karttunen, Mar 19 2021

Examples

			120 is OK because divisors of 120 are {1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120}, the sum of which is 360=120*3.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 22.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 176.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Stewart, L'univers des nombres, "Les nombres multiparfaits", Chapter 15, pp. 82-88, Belin-Pour La Science, Paris 2000.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 141-148.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 135-136.

Crossrefs

Complement is A054027. Cf. A000203, A054030.
Cf. A000396, A005820, A027687, A046060, A046061, for subsequences of terms with quotient sigma(n)/n = 2..6.
Subsequence of the following sequences: A011775, A071707, A083865, A089748 (after the initial 1), A102783, A166070, A175200, A225110, A226476, A237719, A245774, A246454, A259307, A263928, A282775, A323652, A336745, A340864. Also conjectured to be a subsequence of A005153, of A307740, and after 1 also of A295078.
Various number-theoretical functions applied to these numbers: A088843 [tau], A098203 [phi], A098204 [gcd(a(n),phi(a(n)))], A134665 [2-adic valuation], A307741 [sigma], A308423 [product of divisors], A320024 [the odd part], A134740 [omega], A342658 [bigomega], A342659 [smallest prime not dividing], A342660 [largest prime divisor].
Positions of ones in A017666, A019294, A094701, A227470, of zeros in A054024, A082901, A173438, A272008, A318996, A326194, A341524. Fixed points of A009194.
Cf. A069926, A330746 (left inverses, when applied to a(n) give n).
Cf. (other related sequences) A007539, A066135, A066961, A093034, A094467, A134639, A145551, A019278, A194771 [= 2*a(n)], A219545, A229110, A262432, A335830, A336849, A341608.

Programs

  • Haskell
    a007691 n = a007691_list !! (n-1)
    a007691_list = filter ((== 1) . a017666) [1..]
    -- Reinhard Zumkeller, Apr 06 2012
    
  • Mathematica
    Do[If[Mod[DivisorSigma[1, n], n] == 0, Print[n]], {n, 2, 2*10^11}] (* or *)
    Transpose[Select[Table[{n, DivisorSigma[-1, n]}, {n, 100000}], IntegerQ[ #[[2]] ]& ] ][[1]]
    (* Third program: *)
    Select[Range[10^6], IntegerQ@ DivisorSigma[-1, #] &] (* Michael De Vlieger, Mar 19 2021 *)
  • PARI
    for(n=1,1e6,if(sigma(n)%n==0, print1(n", ")))
    
  • Python
    from sympy import divisor_sigma as sigma
    def ok(n): return sigma(n, 1)%n == 0
    print([n for n in range(1, 10**4) if ok(n)]) # Michael S. Branicky, Jan 06 2021

Extensions

More terms from Jud McCranie and then from David W. Wilson.
Incorrect comment removed and the crossrefs-section reorganized by Antti Karttunen, Mar 20 2021

A017666 Denominator of sum of reciprocals of divisors of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 7, 8, 9, 5, 11, 3, 13, 7, 5, 16, 17, 6, 19, 10, 21, 11, 23, 2, 25, 13, 27, 1, 29, 5, 31, 32, 11, 17, 35, 36, 37, 19, 39, 4, 41, 7, 43, 11, 15, 23, 47, 12, 49, 50, 17, 26, 53, 9, 55, 7, 57, 29, 59, 5, 61, 31, 63, 64, 65, 11, 67, 34, 23, 35, 71, 24, 73, 37, 75, 19
Offset: 1

Views

Author

Keywords

Comments

Sum_{ d divides n } 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
Denominators of coefficients in expansion of Sum_{n >= 1} x^n/(n*(1-x^n)) = Sum_{n >= 1} log(1/(1-x^n)).
Also n/gcd(n, sigma(n)) = n/A009194(n); also n/lcm(all common divisors of n and sigma(n)). Equals 1 if 6,28,120,496,672,8128,..., i.e., if n is from A007691. - Labos Elemer, Aug 14 2002
a(A007691(n)) = 1. - Reinhard Zumkeller, Apr 06 2012
Denominator of sigma(n)/n = A000203(n)/n. a(n) = 1 for numbers n in A007691 (multiply-perfect numbers), a(n) = 2 for numbers n in A159907 (numbers n with half-integral abundancy index), a(n) = 3 for numbers n in A245775, a(n) = n for numbers n in A014567 (numbers n such that n and sigma(n) are relatively prime). See A162657 (n) - the smallest number k such that a(k) = n. - Jaroslav Krizek, Sep 23 2014
For all n, a(n) <= n, and thus records are obtained for terms of A014567. - Michel Marcus, Sep 25 2014
Conjecture: If a(n) is in A005153, then n is in A005153. In particular, if n has dyadic rational abundancy index, i.e., a(n) is in A000079 (such as A007691 and A159907), then n is in A005153. Since every term of A005153 greater than 1 is even, any odd n such that a(n) in A005153 must be in A007691. It is natural to ask if there exists a generalization of the indicator function for A005153, call it m(n), such that m(n) = 1 for n in A005153, 0 < m(n) < 1 otherwise, and m(a(n)) <= m(n) for all n. See also A050972. - Jaycob Coleman, Sep 27 2014

Examples

			1, 3/2, 4/3, 7/4, 6/5, 2, 8/7, 15/8, 13/9, 9/5, 12/11, 7/3, 14/13, 12/7, 8/5, 31/16, ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), 4th formula.

Crossrefs

Programs

  • Haskell
    import Data.Ratio ((%), denominator)
    a017666 = denominator . sum . map (1 %) . a027750_row
    -- Reinhard Zumkeller, Apr 06 2012
    
  • Magma
    [Denominator(DivisorSigma(1,n)/n): n in [1..50]]; // G. C. Greubel, Nov 08 2018
    
  • Maple
    with(numtheory): seq(denom(sigma(n)/n), n=1..76) ; # Zerinvary Lajos, Jun 04 2008
  • Mathematica
    Table[Denominator[DivisorSigma[-1, n]], {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2011 *)
    Table[Denominator[DivisorSigma[1, n]/n], {n, 1, 50}] (* G. C. Greubel, Nov 08 2018 *)
  • PARI
    a(n) = denominator(sigma(n)/n); \\ Michel Marcus, Sep 23 2014
    
  • Python
    from math import gcd
    from sympy import divisor_sigma
    def A017666(n): return n//gcd(divisor_sigma(n),n) # Chai Wah Wu, Mar 21 2023

Extensions

More terms from Labos Elemer, Aug 14 2002

A245774 Numbers k that divide 3*sigma(k).

Original entry on oeis.org

1, 3, 6, 12, 28, 84, 120, 234, 270, 496, 672, 1080, 1488, 1638, 6048, 6552, 8128, 24384, 30240, 32760, 35640, 199584, 435708, 523776, 2142720, 2178540, 4713984, 12999168, 18506880, 23569920, 33550336, 36197280, 45532800
Offset: 1

Views

Author

Jaroslav Krizek, Aug 26 2014

Keywords

Comments

Numbers k that divide 3*A000203(k).
Supersequence of A007691 and A245775.
Union of A007691 and 3*A227303. - Robert Israel, Aug 26 2014

Examples

			Number 12 is in the sequence because 12 divides 3*sigma(12) = 3*28.
		

Crossrefs

Cf. A000203 (sum of divisors), A007691 (multiply-perfect numbers).
Cf. A227303 (n divides sigma(3n)), A245775 (denominator(sigma(n)/n) = 3).
Cf. A272027 (3*sigma(n)).

Programs

  • Magma
    [n: n in [1..3000000] | Denominator(3*(SumOfDivisors(n))/n) eq 1]
    
  • Maple
    select(n -> 3*numtheory:-sigma(n) mod n = 0, [$1..10^6]); # Robert Israel, Aug 26 2014
  • Mathematica
    a245774[n_Integer] := Select[Range[n], Divisible[3*DivisorSigma[1, #], #] == True &]; a245774[10^7] (* Michael De Vlieger, Aug 27 2014 *)
  • PARI
    for(n=1,10^9,if((3*sigma(n))%n==0,print1(n,", "))) \\ Derek Orr, Aug 26 2014

A330746 Number of values of k, 1 <= k <= n, with A017666(k) = A017666(n), where A017666(n) = n/gcd(n, sigma(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 4, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 3, 1, 4, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 4, 1, 2, 1, 5, 1, 2, 1, 1, 1, 5, 1, 1, 3, 2, 1, 1, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 3, 1, 2, 3, 1, 1, 6, 4, 4, 1, 2, 4, 2, 1, 1, 1, 1, 1, 4, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 11 2020

Keywords

Comments

Ordinal transform of A017666.

Crossrefs

A left inverse of following sequences: A007691, A159907, A245775.
Cf. also A331175.

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A017666(n) = (n/gcd(n, sigma(n)));
    v330746 = ordinal_transform(vector(up_to, n, A017666(n)));
    A330746(n) = v330746[n];

Formula

For all n >= 1, a(A014567(n)) = 1.
For all n >= 1, a(A007691(n)) = a(A159907(n)) = a(A245775(n)) = n.

A067237 Numbers k such that gcd(sigma(k),k) = k/5.

Original entry on oeis.org

5, 10, 15, 30, 60, 90, 140, 420, 1170, 2480, 3360, 6200, 7440, 8190, 18600, 40640, 114660, 121920, 131040, 297600, 997920, 2618880, 5059200, 64995840, 72602880, 95472000, 102136320, 167751680, 197308800, 433305600, 503255040, 668304000, 714954240, 1307124000, 1381161600, 1502582400
Offset: 1

Views

Author

Benoit Cloitre, Feb 20 2002

Keywords

Comments

Also numbers k such that denominator(sigma(k)/k) = 5. - David A. Corneth, Oct 15 2023

Examples

			30 is in the sequence as gcd(sigma(30), 30) = gcd(72, 30) = 6 = 30/5. - _David A. Corneth_, Oct 15 2023
		

Crossrefs

Cf. A000203.
Cf. similar sequences with A017666(n)=k: A159907 (k=2), A245775 (k=3), A229088 (k=4), A262359 (k=6).

Programs

Extensions

More terms from Sam Handler (sam_5_5_5_0(AT)yahoo.com), Nov 15 2004

A262359 Numbers k such that denominator(sigma(k)/k) = 6.

Original entry on oeis.org

18, 22932, 14520576, 1610563584, 1907020800, 2836487808, 6399679104, 70912195200, 82819376640, 159991977600, 2732372020224, 6164773235712, 68309300505600, 148068998977536, 154119330892800, 264727305267840, 649657533767040, 3701724974438400, 42503412523106304, 220312341220608000
Offset: 1

Views

Author

Michel Marcus, Sep 19 2015

Keywords

Examples

			sigma(18)/18 = 13/6, hence 18 is a term.
		

Crossrefs

Cf. similar sequences with A017666(n)=k: A159907 (k=2), A245775 (k=3), A229088 (k=4), A067237 (k=5).
Cf. A000203.

Programs

  • PARI
    isok(n) = denominator(sigma(n, -1)) == 6;
    
  • PARI
    lista(nn) = {k = 6; nb = 0; while (nb != nn, if (denominator(sigma(k,-1)) == 6, print1(k, ", "); nb++); k += 6;);}

Extensions

a(10)-a(12) from Jud McCranie, Oct 14 2023
More terms from David A. Corneth, Oct 15 2023

A297358 Numbers m such that the denominator of m/rho(m) is 3, where rho is A206369; i.e. A294649(m) = 3.

Original entry on oeis.org

4, 14, 20, 84, 280, 672, 3360, 4200, 4214, 6160, 25284, 36960, 46200, 57792, 76160, 84280, 92400, 202272, 288960, 308700, 656640, 1011360, 1142400, 1264200, 1854160, 2469600, 3178560, 11124960, 12566400, 13906200, 22924160, 27812400, 107557632, 120165120, 212385600
Offset: 1

Views

Author

Michel Marcus, Dec 29 2017

Keywords

Comments

The least instances for 4/3, 5/3, 7/3, 8/3, 10/3 and 11/3 are: 4, 20, 14, 672, 3360, 36960.
Then candidates for 13/3 and 14/3 are 54269201896764616671660406473798293913600000 and 23101697828019582727957348094429256309828763084415991060514234912131560924774400000000.

Examples

			4 is a term because 4/A206369(4) = 4/3.
14 is a term because 14/A206369(14) = 14/6 = 7/3.
		

Crossrefs

Cf. A206369 (rho), A294649, A295236 (analog with 2 instead of 3).
Cf. A245775 (analog for sigma).

Programs

  • Mathematica
    Select[Range[10^5], Denominator[#/(# DivisorSum[#, LiouvilleLambda[#]/# &])] == 3 &] (* Michael De Vlieger, Dec 29 2017 *)
  • PARI
    rhope(p, e) = my(s=1); for(i=1, e, s=s*p + (-1)^i); s;
    rho(n) = my(f=factor(n)); prod(i=1, #f~, rhope(f[i, 1], f[i, 2]));
    isok(n) = denominator(n/rho(n))==3;

Extensions

a(33)-a(35) from Jinyuan Wang, Feb 10 2020
Showing 1-7 of 7 results.