cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A017910 Powers of sqrt(2) rounded down.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 8, 11, 16, 22, 32, 45, 64, 90, 128, 181, 256, 362, 512, 724, 1024, 1448, 2048, 2896, 4096, 5792, 8192, 11585, 16384, 23170, 32768, 46340, 65536, 92681, 131072, 185363, 262144, 370727, 524288
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of positive squares <= 2^n (cf. A136417). - Hans Havermann, Apr 05 2008
If expressed to two significant digits, these are the f-stop numbers in photography: 1, 1.4, 2, 2.8, 4, 5.6, 8, 11, 16, 22, ...
There are also "half stops" (sqrt(2)^(n/2)) and "third stops" (sqrt(2)^(n/3)): 1, 1.4, 1.6, 1.8, 2.0, 2.2, 2.5, 2.8, 3.2, 3.6, 4, 4.5, 5, 5.7, 6.3, 7.1, 8, 9, 10.
a(n) is also the ratio (rounded down) of the curvature of the circle inscribed in the n-th 45-45-90 triangle to that of the circle inscribed in the 1st triangle, with the triangles arranged in a spiral as shown in the illustration in the links section. - Kival Ngaokrajang, Aug 28 2013
a(n) is also the total length of Heighway dragon (rounded down) after n-iterations when L(0) = 1. See illustration in links. - Kival Ngaokrajang, Dec 15 2013

Crossrefs

Cf. A136417, A017912. Bisections: A000079, A084188.
Partial sums of A190568.

Programs

Formula

a(n) = A000196(A000079(n)). - Jason Kimberley, Oct 28 2016
a(n) = A017912(n)-1 if n is odd. a(n) = A017912(n) = 2^(n/2) if n is even. - Chai Wah Wu, Jul 26 2022

A329202 a(n) = floor(2*log_2(n)) = floor(log_2(n^2)).

Original entry on oeis.org

0, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12
Offset: 1

Views

Author

M. F. Hasler, Nov 07 2019

Keywords

Crossrefs

Cf. A017912, A328911 (has this as row lengths).

Programs

  • PARI
    a(n)=logint(n^2,2)

A357753 a(n) is the least square with n binary digits.

Original entry on oeis.org

4, 9, 16, 36, 64, 144, 256, 529, 1024, 2116, 4096, 8281, 16384, 33124, 65536, 131769, 262144, 525625, 1048576, 2099601, 4194304, 8392609, 16777216, 33558849, 67108864, 134235396, 268435456, 536895241, 1073741824, 2147488281, 4294967296, 8589953124, 17179869184
Offset: 3

Views

Author

Hugo Pfoertner, Oct 11 2022

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> ceil(sqrt(2)^(n-1))^2:
    seq(a(n), n=3..35);  # Alois P. Heinz, Oct 13 2022
  • Mathematica
    Array[Ceiling[Sqrt[2^(# - 1)]]^2 &, 33, 3]
  • PARI
    for (n=3, 35, for(k=0, oo, if(#digits(k^2,2)==n, print1(k^2,", "); break)))
    
  • PARI
    a(n) = if(n%2 == 1, 1 << (n-1), ceil(sqrt(1<<(n-1)))^2) \\ David A. Corneth, Oct 11 2022
    
  • Python
    from math import isqrt
    def A357753(n): return 1<Chai Wah Wu, Oct 13 2022

Formula

a(n) = A017912(n-1)^2.
a(2n+1) = (2^n)^2 = 4^n, for n>=1; indeed: 4^n_{10} = 10^(2n){2} that is the least number with 2n+1 binary digits. - _Bernard Schott, Oct 15 2022

A056007 Difference between 2^n and largest square strictly less than 2^n.

Original entry on oeis.org

1, 1, 3, 4, 7, 7, 15, 7, 31, 28, 63, 23, 127, 92, 255, 7, 511, 28, 1023, 112, 2047, 448, 4095, 1792, 8191, 7168, 16383, 5503, 32767, 22012, 65535, 88048, 131071, 166831, 262143, 296599, 524287, 444943, 1048575, 296863, 2097151, 1187452, 4194303
Offset: 0

Views

Author

Henry Bottomley, Jul 24 2000

Keywords

Comments

Note that this is not a strictly ascending sequence. - Alonso del Arte, Apr 28 2022

Examples

			a(5) = 2^5 - 5^2 =  7;
a(6) = 2^6 - 7^2 = 15.
		

Crossrefs

Programs

  • Mathematica
    Table[2^n - Floor[Sqrt[2^n - Boole[EvenQ[n]]]]^2, {n, 0, 47}] (* Alonso del Arte, Apr 28 2022 *)
  • PARI
    a(n) = if(n%2, sqrtint(1<Kevin Ryde, Oct 12 2022
  • Python
    from math import isqrt
    def a(n): return 2**n - isqrt(2**n-1)**2
    print([a(n) for n in range(43)]) # Michael S. Branicky, Apr 29 2022
    

Formula

a(n) = 2^n - (ceiling(2^(n/2)) - 1)^2 = A000079(n) - (A017912(n) - 1)^2. - Vladeta Jovovic, May 01 2003
a(n) = A071797(A000079(n)). - Michel Marcus, Apr 29 2022
a(n) = 2^n - A357754(n). - Kevin Ryde, Oct 12 2022

A365931 a(n) = number of pairs {x,y} with (x,y > 1) such that x^y (= terms of A072103) has bit length <= n.

Original entry on oeis.org

0, 0, 1, 3, 7, 10, 18, 25, 35, 50, 69, 94, 132, 178, 244, 334, 460, 629, 869, 1201, 1668, 2314, 3223, 4493, 6280, 8793, 12322, 17288, 24286, 34139, 48036, 67630, 95274, 134285, 189349, 267090, 376880, 531942, 750991, 1060463, 1497741, 2115669, 2988957, 4223225, 5967822, 8433889
Offset: 1

Views

Author

Karl-Heinz Hofmann, Oct 07 2023

Keywords

Comments

Number of pairs {x,y} with (x,y > 1) for which x^y < 2^n-1.
In some special cases different pairs have the same result (see A072103 and the example here) and those multiple representations are counted separately.
There is no need to include 2^n-1 because it is a Mersenne number and it cannot be a power anyway.
Limit_{n->oo} a(n)/a(n-1) = sqrt(2) = A002193.
Partial sums of A365930.

Examples

			For n = 6: the Mersenne number 2^6-1 = 63 is the largest number with bit length 6 and the upper bound for the following a(6) = 10 powers: 2^2, 2^3, 2^4, 2^5, 3^2, 3^3, 4^2, 5^2, 6^2, 7^2.
		

Crossrefs

Cf. A072103, A002193, A365930 (first differences).
Cf. A017912 (squares), A017981 (cubes).

Programs

  • Mathematica
    a[n_] := Sum[Ceiling[2^(n/k)] - 2, {k, 2, n}]; Array[a, 47]
  • Python
    from sympy import integer_nthroot, integer_log
    def A365931(n):
        result, nMersenne, new = 0, (1<
    				

Formula

a(n) = Sum_{y = 2..n} (ceiling(2^(n/y)) - 2)
a(n) = Sum_{y = 2..n} (floor((2^n-1)^(1/y)) - 1)
a(n) = Sum_{k = 1..n} A365930(k).

A017930 Powers of sqrt(8) rounded up.

Original entry on oeis.org

1, 3, 8, 23, 64, 182, 512, 1449, 4096, 11586, 32768, 92682, 262144, 741456, 2097152, 5931642, 16777216, 47453133, 134217728, 379625063, 1073741824, 3037000500, 8589934592, 24296004000, 68719476736
Offset: 0

Views

Author

Keywords

Programs

Formula

a(n) = A017912(3n). - R. J. Mathar, Apr 28 2008
Showing 1-6 of 6 results.