cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A133028 Even perfect numbers divided by 2.

Original entry on oeis.org

3, 14, 248, 4064, 16775168, 4294934528, 68719345664, 1152921504069976064, 1329227995784915872327346307976921088, 95780971304118053647396689042151819065498660774084608, 6582018229284824168619876730229361455111736159193471558891864064, 7237005577332262213973186563042994240786838745737417944533177174565599576064
Offset: 1

Views

Author

Omar E. Pol, Oct 20 2007, Apr 23 2008, Apr 28 2009

Keywords

Comments

a(13) has 314 digits and is too large to include. - R. J. Mathar, Oct 23 2007
Largest proper divisor of n-th even perfect number.
Also numbers k such that A000203(k) is divisible 24. - Ctibor O. Zizka, Jun 29 2009

Crossrefs

Programs

  • Maple
    a:=proc(n) if isprime(2^n-1)=true then 2^(n-2)*(2^n-1) else end if end proc: seq(a(n),n=1..120); # Emeric Deutsch, Oct 24 2007
  • Mathematica
    p = Select[2^Range[400] - 1, PrimeQ]; p*(p+1)/4 (* Vladimir Joseph Stephan Orlovsky, Feb 02 2012 *)
    Map[2^(#-2) * (2^# - 1) &, MersennePrimeExponent[Range[12]]] (* Amiram Eldar, Oct 21 2024 *)

Formula

a(n) = A000396(n)/2. - R. J. Mathar, Oct 23 2007 [Assuming there are no odd perfect numbers. - Jianing Song, Sep 17 2022]
a(n) = 2^(A000043(n) - 2) * A000668(n). - Omar E. Pol, Mar 01 2008
a(n) = A032742(A000396(n)), assuming there are no odd perfect numbers.

Extensions

More terms from R. J. Mathar and Emeric Deutsch, Oct 23 2007

A135653 Divisors of 496 (the 3rd perfect number), written in base 2.

Original entry on oeis.org

1, 10, 100, 1000, 10000, 11111, 111110, 1111100, 11111000, 111110000
Offset: 1

Views

Author

Omar E. Pol, Feb 23 2008, Mar 03 2008

Keywords

Comments

The number of divisors of the third perfect number is equal to 2*A000043(3)=A061645(3)=10.

Examples

			The structure of divisors of 496 (see A018487)
-------------------------------------------------------------------------
n ... Divisor . Formula ....... Divisor written in base 2 ...............
-------------------------------------------------------------------------
1)......... 1 = 2^0 ........... 1
2)......... 2 = 2^1 ........... 10
3)......... 4 = 2^2 ........... 100
4)......... 8 = 2^3 ........... 1000
5)........ 16 = 2^4 ........... 10000 ... (The 3rd superperfect number)
6)........ 31 = 2^5 - 2^0 ..... 11111 ... (The 3rd Mersenne prime)
7)........ 62 = 2^6 - 2^1 ..... 111110
8)....... 124 = 2^7 - 2^2 ..... 1111100
9)....... 248 = 2^8 - 2^3 ..... 11111000
10)...... 496 = 2^9 - 2^4 ..... 111110000 ... (The 3rd perfect number)
		

Crossrefs

For more information see A018487 (Divisors of 496). Cf. A000043, A000079, A000396, A000668, A019279, A061645, A061652.

Programs

  • Mathematica
    FromDigits[IntegerDigits[#,2]]&/@Divisors[496] (* Harvey P. Dale, Dec 02 2018 *)
  • PARI
    apply(n->fromdigits(binary(n)), divisors(496)) \\ Charles R Greathouse IV, Jun 21 2017

Formula

a(n)=A018487(n), written in base 2. Also, for n=1 .. 10: If n<=(A000043(3)=5) then a(n) is the concatenation of the digit "1" and n-1 digits "0" else a(n) is the concatenation of A000043(3)=5 digits "1" and (n-1-A000043(3)) digits "0".

A133031 Triangle read by rows: row n lists divisors of n-th perfect number A000396(n).

Original entry on oeis.org

1, 2, 3, 6, 1, 2, 4, 7, 14, 28, 1, 2, 4, 8, 16, 31, 62, 124, 248, 496, 1, 2, 4, 8, 16, 32, 64, 127, 254, 508, 1016, 2032, 4064, 8128, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8191, 16382, 32764, 65528, 131056, 262112, 524224, 1048448, 2096896
Offset: 1

Views

Author

Omar E. Pol, Oct 26 2007

Keywords

Crossrefs

Cf. A018254, A018487, A027750. Perfect numbers: A000396.

Programs

  • Mathematica
    Divisors[PerfectNumber[Range[5]]]//Flatten (* Harvey P. Dale, Jul 29 2024 *)

A133024 Divisors of 8128, the 4th perfect number.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 127, 254, 508, 1016, 2032, 4064, 8128
Offset: 1

Views

Author

Omar E. Pol, Oct 26 2007, Mar 03 2008, Dec 27 2008

Keywords

Comments

127 is the 4th Mersenne prime: A000668.
The number of divisors of the 4th perfect number is 2*A000043(4)=A061645(4)=14.
For the structure of this sequence and its binary expansion, see A135654.

Crossrefs

Cf. A018254, A018487. Perfect numbers: A000396.

Programs

Formula

For n=1..7 : a(n) = 2^(n-1). For n=8..14: a(n) = 2^(n-1) - 2^(n-8) = A000668(4)*2^(n-8).

A133025 Divisors of 33550336, the 5th perfect number.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8191, 16382, 32764, 65528, 131056, 262112, 524224, 1048448, 2096896, 4193792, 8387584, 16775168, 33550336
Offset: 1

Views

Author

Omar E. Pol, Oct 26 2007, Mar 03 2008, Dec 27 2008

Keywords

Comments

8191 is the 5th Mersenne prime: A000668.
The number of divisors of the 5th perfect number is 2*A000043(5)=A061645(5)=26.
For the structure of this sequence and its binary expansion, see A135655.

Crossrefs

Cf. A018254, A018487. Perfect numbers: A000396.

Programs

Formula

For n=1..13 : a(n) = 2^(n-1). For n=14..26: a(n) = 2^(n-1) - 2^(n-14) = A000668(5)*2^(n-14).

A133029 Divisors of 1729, the 2nd taxicab number (also called the Hardy-Ramanujan number).

Original entry on oeis.org

1, 7, 13, 19, 91, 133, 247, 1729
Offset: 1

Views

Author

Omar E. Pol, Oct 23 2007, Nov 07 2007

Keywords

Comments

Note that 19 * 91 = 1729. For products of n-th prime and n-th prime written backwards, see A133019.

Examples

			7 * 247 = 1729 and 13 * 133 = 1729.
		

Crossrefs

Cf. A000005, A018487. Taxicab numbers: A011541.

Programs

A139247 Triangle read by rows: row n lists the divisors of n-th perfect number A000396(n) that are multiples of n-th Mersenne prime A000668(n).

Original entry on oeis.org

3, 6, 7, 14, 28, 31, 62, 124, 248, 496, 127, 254, 508, 1016, 2032, 4064, 8128, 8191, 16382, 32764, 65528, 131056, 262112, 524224, 1048448, 2096896, 4193792, 8387584, 16775168, 33550336, 131071, 262142, 524284, 1048568, 2097136, 4193792
Offset: 1

Views

Author

Omar E. Pol, Apr 22 2008

Keywords

Comments

Also, row n list the divisors of n-th perfect number that are not powers of 2.
First term of row n is the n-th Mersenne prime A000668(n). Last term of row n is the n-th perfect number A000396(n). Row n has A000043(n) terms. The sum of row n is equal to A133049(n), the square of n-th Mersenne prime A000668(n).

Examples

			Triangle begins:
  3, 6,
  7, 14, 28
  31, 62, 124, 248, 496
  127, 254, 508, 1016, 2032, 4064, 8128
  ...
==========================================================
Row .... First term ..... Last term ....... Row sum ......
n ..... (A000668(n)) ... (A000396(n)) ... (A000668(n)^2) .
==========================================================
1 ............ 3 .............. 6 ......... 3^2 = 9
2 ............ 7 ............. 28 ......... 7^2 = 49
3 ........... 31 ............ 496 ........ 31^2 = 961
4 .......... 127 ........... 8128 ....... 127^2 = 16129
5 ......... 8191 ....... 33550336 ...... 8191^2 = 67092481
		

Crossrefs

A139246 Triangle read by rows: row n lists the proper divisors of n-th perfect number A000396(n).

Original entry on oeis.org

1, 2, 3, 1, 2, 4, 7, 14, 1, 2, 4, 8, 16, 31, 62, 124, 248, 1, 2, 4, 8, 16, 32, 64, 127, 254, 508, 1016, 2032, 4064, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8191, 16382, 32764, 65528, 131056, 262112, 524224, 1048448, 2096896, 4193792, 8387584, 16775168, 1
Offset: 1

Views

Author

Omar E. Pol, Apr 22 2008, corrected Apr 25 2008

Keywords

Comments

Rows n has A133033(n) terms.
The n-th row sum is the n-th perfect number A000396(n).

Examples

			Triangle begins:
  1, 2, 3
  1, 2, 4, 7, 14
  1, 2, 4, 8, 16, 31, 62, 124, 248
  1, 2, 4, 8, 16, 32, 64, 127, 254, 508, 1016, 2032, 4064
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Most[Divisors[PerfectNumber[n]]],{n,6}]//Flatten (* Harvey P. Dale, Jul 08 2024 *)

A139248 Triangle read by rows: row n lists the proper divisors of n-th even superperfect number A061652(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 8, 1, 2, 4, 8, 16, 32, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 1, 2, 4, 8, 16
Offset: 1

Views

Author

Omar E. Pol, Apr 22 2008

Keywords

Comments

Also, row n list the proper divisors of n-th superperfect number A019279(n), if there are no odd superperfect numbers.
Row n has A000043(n) - 1 = A090748(n) terms.

Examples

			Triangle begins:
  1
  1, 2
  1, 2, 4, 8
  1, 2, 4, 8, 16, 32
  1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048
  1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768
  ...
		

Crossrefs

A233757 Triangle read by rows: T(n,k) = (2^n-1)*2^(k-1), for n >= 1 and 1<=k<=n.

Original entry on oeis.org

1, 3, 6, 7, 14, 28, 15, 30, 60, 120, 31, 62, 124, 248, 496, 63, 126, 252, 504, 1008, 2016, 127, 254, 508, 1016, 2032, 4064, 8128, 255, 510, 1020, 2040, 4080, 8160, 16320, 32640, 511, 1022, 2044, 4088, 8176, 16352, 32704, 65408, 130816, 1023, 2046, 4092
Offset: 1

Views

Author

Omar E. Pol, Jan 12 2014

Keywords

Comments

Column 1 gives the positive terms of A000225.
Leading diagonal gives the positive terms of A006516.
The sum of row n is T(n,1)^2 = A000225(n)^2, hence row sums give A060867.
If n = A000043(m) then T(n,1) = A000668(m) and row n lists last n divisors of m-th even perfect number, which are also the divisors that are multiples of m-th Mersenne prime, for m >= 1.
If n = A000043(m) then T(n,n) = A000396(m), assuming there are no odd perfect numbers, for m >= 1.

Examples

			Triangle begins:
1;
3, 6;
7, 14, 28;
15, 30, 60, 120;
31, 62, 124, 248, 496;
63, 126, 252, 504, 1008, 2016;
127, 254, 508, 1016, 2032, 4064, 8128;
255, 510, 1020, 2040, 4080, 8160, 16320, 32640;
511, 1022, 2044, 4088, 8176, 16352, 32704, 65408, 130816;
...
		

Crossrefs

Programs

  • Mathematica
    Table[(2^n-1)2^(k-1),{n,10},{k,n}]//Flatten (* Harvey P. Dale, Oct 10 2018 *)

Formula

T(n,k) = A000225(n)*A000079(k-1), n >= 1, 1<=k<=n.
Showing 1-10 of 10 results.