cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A018856 2^a(n) is the smallest power of 2 beginning with n.

Original entry on oeis.org

0, 1, 5, 2, 9, 6, 46, 3, 53, 10, 50, 7, 17, 47, 77, 4, 34, 54, 84, 11, 31, 51, 61, 81, 8, 18, 38, 48, 68, 78, 98, 5, 25, 35, 45, 55, 75, 85, 95, 12, 22, 32, 42, 145, 52, 62, 72, 82, 92, 102, 9, 19, 29, 39, 142, 49, 59, 162, 69, 79, 89, 192, 99, 6, 16, 119, 26
Offset: 1

Views

Author

Keywords

References

  • A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems With Elementary Solutions, Vol. 1, pp. 29, 199-200, Prob. 91a, Dover, NY, 1987.

Crossrefs

Cf. A018802.
Cf. A100129 (a(n) = n).

Programs

  • Haskell
    import Data.List (isPrefixOf, findIndex)
    import Data.Maybe (fromJust)
    a018856 n =
       fromJust $ findIndex (show n `isPrefixOf`) $ map show a000079_list
    -- Reinhard Zumkeller, Aug 04 2011
    
  • Mathematica
    f[n_] := Block[{k = 1, m = Floor[ Log[10, n]]}, While[ Log[10, 2^k] < Floor[ Log[10, n]], k++ ]; While[ Quotient[2^k, 10^(Floor[k*Log[10, 2]] - m)] != n, k++ ]; k]; f[1] = 0;; Array[f, 73] (* Robert G. Wilson v, Jun 02 2009 *)
  • Python
    from itertools import count
    def aupton(terms):
        adict, pow2 = dict(), 1
        for i in count(0):
            s = str(pow2)
            for j in range(len(s)):
                t = int(s[:j+1])
                if t > terms:
                    break
                if t not in adict:
                    adict[t] = i
            if len(adict) == terms:
                return [adict[i+1] for i in range(terms)]
            pow2 *= 2
    print(aupton(67)) # Michael S. Branicky, Apr 08 2023

A018869 Smallest power of 9 that begins with n.

Original entry on oeis.org

1, 282429536481, 387420489, 4782969, 59049, 6561, 729, 81, 9, 109418989131512359209, 11972515182562019788602740026717047105681, 12157665459056928801, 1350851717672992089
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A018802 (k=2), A018857 (k=3), A018859 (k=4), A018861 (k=5), A018863 (k=6), A018865 (k=7), A018867 (k=8), this sequence (k=9).

Formula

a(n) = 9^A018870(n). - Seiichi Manyama, Jan 29 2017
a(9^n) = 9^n for n >= 0. - Seiichi Manyama, Jan 29 2017

A018861 Smallest power of 5 that begins with n.

Original entry on oeis.org

1, 25, 3125, 48828125, 5, 625, 78125, 88817841970012523233890533447265625, 9765625, 108420217248550443400745280086994171142578125, 11920928955078125, 125, 1387778780781445675529539585113525390625, 1490116119384765625, 15625
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A018802 (k=2), A018857 (k=3), A018859 (k=4), this sequence (k=5), A018863 (k=6), A018865 (k=7), A018867 (k=8), A018869 (k=9).

Formula

a(n) = 5^A018862(n). - Seiichi Manyama, Jan 29 2017
a(5^n) = 5^n for n >= 0. - Seiichi Manyama, Jan 29 2017

A171132 The smallest exponent k such that the digit n appears at two adjacent places in the decimal representation of 2^k.

Original entry on oeis.org

53, 40, 43, 25, 18, 16, 46, 24, 19, 33
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Dec 04 2009

Keywords

Examples

			n=0: 2^53 = 9007199254740992, digit 0 duplicated at 9(00)7199254..
n=1: 2^40 = 1099511627776, digit 1 duplicated at 10995(11)627776..
n=2: 2^43 = 8796093022208, digit 2 duplicated even twice
n=3: 2^25 = 33554432, digit 3 duplicated at (33)554432
n=4: 2^18 = 262144
n=5: 2^16 = 65536
n=6: 2^46 = 70368744177664
n=7: 2^24 = 16777216
n=8: 2^19 = 524288
n=9: 2^33 = 8589934592
		

References

  • Helmut Kracke, Mathe-musische Knobelisken, Duemmler Bonn, 2. Auflage 1983

Crossrefs

Extensions

Definition simplified, keyword:base,full added - R. J. Mathar, Dec 07 2009

A018857 Smallest power of 3 that begins with n.

Original entry on oeis.org

1, 27, 3, 4782969, 59049, 6561, 729, 81, 9, 10460353203, 1162261467, 129140163, 1350851717672992089, 14348907, 1594323, 16677181699666569, 177147, 1853020188851841, 19683, 205891132094649, 2187, 22876792454961
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A018802 (k=2), this sequence (k=3), A018859 (k=4), A018861 (k=5), A018863 (k=6), A018865 (k=7), A018867 (k=8), A018869 (k=9).

Formula

a(n) = 3^A018858(n). - Seiichi Manyama, Jan 29 2017
a(3^n) = 3^n for n >= 0. - Seiichi Manyama, Jan 29 2017

A018859 Smallest power of 4 that begins with n.

Original entry on oeis.org

1, 256, 302231454903657293676544, 4, 5070602400912917605986812821504, 64, 70368744177664, 81129638414606681695789005144064, 91343852333181432387730302044767688728495783936, 1024, 1125899906842624
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A018802 (k=2), A018857 (k=3), this sequence (k=4), A018861 (k=5), A018863 (k=6), A018865 (k=7), A018867 (k=8), A018869 (k=9).

Formula

a(n) = 4^A018860(n). - Michel Marcus, Feb 24 2016
a(4^n) = 4^n for n >= 0. - Seiichi Manyama, Jan 29 2017

A018863 Smallest power of 6 that begins with n.

Original entry on oeis.org

1, 216, 36, 46656, 50021738714629030177311081962496059484833406150976385567830453518336, 6, 7776, 80204967233062404407033075859456
Offset: 1

Views

Author

Keywords

Comments

a(9) = 6^176, approximately 9.007827639*10^136. - Alan Frank, Jan 28 2011
a(10) = 6^9 = 10077696. - N. J. A. Sloane, Jan 28 2011

Crossrefs

Main sequence is A018864.
Cf. A018802 (k=2), A018857 (k=3), A018859 (k=4), A018861 (k=5), this sequence (k=6), A018865 (k=7), A018867 (k=8), A018869 (k=9).

Formula

a(n) = 6^A018864(n). - Seiichi Manyama, Jan 30 2017
a(6^n) = 6^n for n >= 0. - Seiichi Manyama, Jan 30 2017

A018865 Smallest power of 7 that begins with n.

Original entry on oeis.org

1, 2401, 343, 49, 5764801, 678223072849, 7, 823543, 96889010407, 107006904423598033356356300384937784807, 117649, 129934811447123020117172145698449, 13841287201, 1481113296616977741464105532513750734030421355207
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A018802 (k=2), A018857 (k=3), A018859 (k=4), A018861 (k=5), A018863 (k=6), this sequence (k=7), A018867 (k=8), A018869 (k=9).

Formula

a(n) = 7^A018866(n). - Seiichi Manyama, Jan 30 2017
a(7^n) = 7^n for n >= 0. - Seiichi Manyama, Jan 30 2017

Extensions

One more term (a(14)) from Harvey P. Dale, Mar 04 2014

A018867 Smallest power of 8 that begins with n.

Original entry on oeis.org

1, 262144, 32768, 4096, 512, 64, 73786976294838206464, 8, 9223372036854775808, 1073741824, 1152921504606846976, 1237940039285380274899124224, 134217728, 144115188075855872, 154742504910672534362390528, 16777216
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A018802 (k=2), A018857 (k=3), A018859 (k=4), A018861 (k=5), A018863 (k=6), A018865 (k=7), this sequence (k=8), A018869 (k=9).

Formula

a(n) = 8^A018868(n). - Seiichi Manyama, Jan 29 2017
a(8^n) = 8^n for n >= 0. - Seiichi Manyama, Jan 29 2017

A171242 a(n) = k is the smallest exponent k such that at least 3 equal decimal digits "n n n" appear in the decimal representation of 2^k (n=0,1,...,9).

Original entry on oeis.org

242, 42, 43, 83, 44, 41, 157, 24, 39, 50
Offset: 0

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Dec 06 2009

Keywords

Examples

			n=0: 2^242 = 7067388259113537318333190002971674063309935587502475832486424805170479104
n=1: 2^42 = 4398046511104
n=2: 2^43 = 8796093022208
n=3: 2^83 = 9671406556917033397649408
n=4: 2^44 = 17592186044416
n=5: 2^41 = 2199023255552
n=6: 2^157 = 182687704666362864775460604089535377456991567872
n=7: 2^24 = 16777216
n=8: 2^39 = 549755813888
n=9: 2^50 = 1125899906842624
		

References

  • E. I. Ignatjew, Mathematische Spielereien, Urania Verlag Leipzig-Jena-Berlin, 2. Auflage 1982
  • Helmut Kracke, Mathe-musische Knobelisken, Duemmler Bonn, 2. Auflage 1983

Crossrefs

Programs

  • Mathematica
    Table[Module[{k=1},While[SequenceCount[IntegerDigits[2^k],{n,n,n}]<1,k++];k],{n,0,9}] (* Harvey P. Dale, Nov 28 2023 *)

Extensions

Offset corrected by Alois P. Heinz, Nov 28 2023
Showing 1-10 of 17 results. Next