A018819 Binary partition function: number of partitions of n into powers of 2.
1, 1, 2, 2, 4, 4, 6, 6, 10, 10, 14, 14, 20, 20, 26, 26, 36, 36, 46, 46, 60, 60, 74, 74, 94, 94, 114, 114, 140, 140, 166, 166, 202, 202, 238, 238, 284, 284, 330, 330, 390, 390, 450, 450, 524, 524, 598, 598, 692, 692, 786, 786, 900, 900, 1014, 1014, 1154, 1154, 1294, 1294
Offset: 0
Examples
G.f. = 1 + x + 2*x^2 + 2*x^3 + 4*x^4 + 4*x^5 + 6*x^6 + 6*x^7 + 10*x^8 + ... a(4) = 4: the partitions are 4, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1. a(7) = 6: the partitions are 4 + 2 + 1, 4 + 1 + 1 + 1, 2 + 2 + 2 + 1, 2 + 2 + 1 + 1 + 1, 2 + 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1 + 1. From _Joerg Arndt_, Dec 17 2012: (Start) The a(10) = 14 binary partitions of 10 are (in lexicographic order) [ 1] [ 1 1 1 1 1 1 1 1 1 1 ] [ 2] [ 2 1 1 1 1 1 1 1 1 ] [ 3] [ 2 2 1 1 1 1 1 1 ] [ 4] [ 2 2 2 1 1 1 1 ] [ 5] [ 2 2 2 2 1 1 ] [ 6] [ 2 2 2 2 2 ] [ 7] [ 4 1 1 1 1 1 1 ] [ 8] [ 4 2 1 1 1 1 ] [ 9] [ 4 2 2 1 1 ] [10] [ 4 2 2 2 ] [11] [ 4 4 1 1 ] [12] [ 4 4 2 ] [13] [ 8 1 1 ] [14] [ 8 2 ] The a(11) = 14 binary partitions of 11 are obtained by appending 1 to each partition in the list. The a(10) = 14 non-squashing partitions of 10 are (in lexicographic order) [ 1] [ 6 3 1 1 ] [ 2] [ 6 3 2 ] [ 3] [ 6 4 1 ] [ 4] [ 6 5 ] [ 5] [ 7 2 1 1 ] [ 6] [ 7 2 2 ] [ 7] [ 7 3 1 ] [ 8] [ 7 4 ] [ 9] [ 8 2 1 ] [10] [ 8 3 ] [11] [ 9 1 1 ] [12] [ 9 2 ] [13] [ 10 1 ] [14] [ 11 ] The a(11) = 14 non-squashing partitions of 11 are obtained by adding 1 to the first part in each partition in the list. (End) From _David V. Feldman_, Jan 29 2020: (Start) The a(10) = 14 non-borrowing partitions of 10 are (in lexicographic order) [ 1] [1 1 1 1 1 1 1 1 1 1] [ 2] [2 2 2 2 2] [ 3] [3 1 1 1 1 1 1 1] [ 4] [3 3 1 1 1 1] [ 5] [3 3 2 2] [ 6] [3 3 3 1] [ 7] [5 1 1 1 1 1] [ 8] [5 5] [ 9] [6 2 2] [10] [6 4] [11] [7 1 1 1] [12] [7 3] [13] [9 1] [14] [10] The a(11) = 14 non-borrowing partitions of 11 are obtained either by adding 1 to the first even part in each partition (if any) or else appending a 1 after the last part. (End) For example, the five partitions of 4, written in nonincreasing order, are [1, 1, 1, 1], [2, 1, 1], [2, 2], [3, 1], [4]. The last four satisfy the condition, and a(4) = 4. The Maple program below verifies this for small values of n.
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Max Alekseyev and Franklin T. Adams-Watters, Two proofs of an observation of Vladeta Jovovic
- Giedrius Alkauskas, Generalization of the Rodseth-Gupta theorem on binary partitions, Lithuanian Math. J., 43 (2) (2003), 103-110.
- Giedrius Alkauskas, Congruence Properties of the Function that Counts Compositions into Powers of 2 , J. Int. Seq. 13 (2010), 10.5.3.
- Joerg Arndt, Matters Computational (The Fxtbook), section 38.1, p.729.
- Scott M. Bailey and Donald M. Larson, The A(1)-module structure of the homology of Brown-Gitler spectra, arXiv:2107.01316 [math.AT], 2021.
- Valentin P. Bakoev, Algorithmic approach to counting of certain types m-ary partitions, Discrete Mathematics, 275 (2004) pp. 17-41.
- Philippe Biane, Laver tables and combinatorics, arXiv:1810.00548 [math.CO], 2018. Mentions this sequence.
- Peter J. Cameron, Firdous Ee Jannat, Rajat Kanti Nath, and Reza Sharafdini, A survey on conjugacy class graphs of groups, arXiv:2403.09423 [math.GR], 2024.
- Karl Dilcher and Larry Ericksen, Polynomial Analogues of Restricted b-ary Partition Functions, J. Int. Seq., Vol. 22 (2019), Article 19.3.2.
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, 2009; see page 48, 581.
- Maciej Gawron, Piotr Miska and Maciej Ulas, Arithmetic properties of coefficients of power series expansion of Prod_{n>=0} (1-x^(2^n))^t, arXiv:1703.01955 [math.NT], 2017.
- Michael D. Hirschhorn and James A. Sellers, A different view of m-ary partitions, Australasian J. Combin., vol.30 (2004), 193-196.
- Jonathan Jordan and Richard Southwell, Further Properties of Reproducing Graphs, Applied Mathematics, Vol. 1 No. 5, 2010, pp. 344-350. doi: 10.4236/am.2010.15045. - From _N. J. A. Sloane_, Feb 03 2013
- Yasuyuki Kachi and Pavlos Tzermias, On the m-ary partition numbers, Algebra and Discrete Mathematics, Volume 19 (2015). Number 1, pp. 67-76.
- Matjaž Konvalinka and Igor Pak, Cayley compositions, partitions, polytopes, and geometric bijections, Journal of Combinatorial Theory, Series A, Volume 123, Issue 1, April 2014, Pages 86-91; see also DOI link. - From _N. J. A. Sloane_, Dec 22 2012
- Apisit Pakapongpun and Thomas Ward, Functorial Orbit counting, J. Int. Seq., 12 (2009) 09.2.4, example 25.
- Øystein J. Rodseth and James A. Sellers, On a Restricted m-Non-Squashing Partition Function, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.4.
- David Ruelle, Dynamical zeta functions and transfer operators, Notices Amer. Math. Soc., 49 (No. 8, 2002), 887-895; see p. 888.
- N. J. A. Sloane and James A. Sellers, On non-squashing partitions, arXiv:math/0312418 [math.CO], 2003.
- N. J. A. Sloane and James A. Sellers, On non-squashing partitions, Discrete Math., 294 (2005), 259-274.
Crossrefs
A000123 is the main entry for the binary partition function and gives many more properties and references.
Convolution inverse of A106400.
Cf. A023893, A062051, A105420, A131995, A040039, A018819, A088567, A089054, A115361, A168261, A171238, A179051, A008619.
Row lengths of A277905.
A372890 adds up binary ranks of integer partitions.
Programs
-
Haskell
a018819 n = a018819_list !! n a018819_list = 1 : f (tail a008619_list) where f (x:xs) = (sum $ take x a018819_list) : f xs -- Reinhard Zumkeller, Jan 28 2012
-
Haskell
import Data.List (intersperse) a018819 = (a018819_list !!) a018819_list = 1 : 1 : (<*>) (zipWith (+)) (intersperse 0) (tail a018819_list) -- Johan Wiltink, Nov 08 2018
-
Maple
with(combinat); N:=8; a:=array(1..N); c:=array(1..N); for n from 1 to N do p:=partition(n); np:=nops(p); t:=0; for s to np do r:=p[s]; r:=sort(r,`>`); nr:=nops(r); j:=1; # while j
sum(r[k],k=j+1..nr) do j:=j+1;od; # gives A040039 while j = sum(r[k],k=j+1..nr) do j:=j+1;od; # gives A018819 if j=nr then t:=t+1;fi od; a[n]:=t; od; # John McKay -
Mathematica
max = 59; a[0] = a[1] = 1; a[n_?OddQ] := a[n] = a[n-1]; a[n_?EvenQ] := a[n] = a[n-1] + a[n/2]; Table[a[n], {n, 0, max}] (* or *) CoefficientList[Series[1/Product[(1-x^(2^j)), {j, 0, Log[2, max] // Ceiling}], {x, 0, max}], x] (* Jean-François Alcover, May 17 2011, updated Feb 17 2014 *) a[ n_] := If[n<1, Boole[n==0], a[n] = a[n-1] + If[EvenQ@n, a[Quotient[n,2]], 0]]; (* Michael Somos, May 04 2022 *) Table[Count[IntegerPartitions[n],?(AllTrue[Log2[#],IntegerQ]&)],{n,0,60}] (* _Harvey P. Dale, Jun 20 2024 *)
-
PARI
{ n=15; v=vector(n); for (i=1,n,v[i]=vector(2^(i-1))); v[1][1]=1; for (i=2,n, k=length(v[i-1]); for (j=1,k, v[i][j]=v[i-1][j]+1; v[i][j+k]=v[i-1][j]*2)); c=vector(n); for (i=1,n, for (j=1,2^(i-1), if (v[i][j]<=n, c[v[i][j]]++))); c } /* Jon Perry */
-
PARI
{a(n) = my(A, m); if( n<1, n==0, m=1; A = 1 + O(x); while(m<=n, m*=2; A = subst(A, x, x^2) / (1 - x)); polcoeff(A, n))}; /* Michael Somos, Aug 25 2003 */
-
PARI
{a(n) = if( n<1, n==0, if( n%2, a(n-1), a(n/2)+a(n-1)))}; /* Michael Somos, Aug 25 2003 */
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A018819(n): return 1 if n == 0 else A018819(n-1) + (0 if n % 2 else A018819(n//2)) # Chai Wah Wu, Jan 18 2022
Formula
a(2m+1) = a(2m), a(2m) = a(2m-1) + a(m). Proof: If n is odd there is a part of size 1; removing it gives a partition of n - 1. If n is even either there is a part of size 1, whose removal gives a partition of n - 1, or else all parts have even sizes and dividing each part by 2 gives a partition of n/2.
G.f.: 1 / Product_{j>=0} (1-x^(2^j)).
a(n) = (1/n)*Sum_{k = 1..n} A038712(k)*a(n-k), n > 1, a(0) = 1. - Vladeta Jovovic, Aug 22 2002
a(2*n) = a(2*n + 1) = A000123(n). - Michael Somos, Aug 25 2003
a(n) = 1 if n = 0, Sum_{j = 0..floor(n/2)} a(j) if n > 0. - David W. Wilson, Aug 16 2007
G.f. A(x) satisfies A(x^2) = (1-x) * A(x). - Michael Somos, Aug 25 2003
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2*w - 2*u*v^2 + v^3. - Michael Somos, Apr 10 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u6 * u1^3 - 3*u3*u2*u1^2 + 3*u3*u2^2*u1 - u3*u2^3. - Michael Somos, Oct 15 2006
G.f.: 1/( Sum_{n >= 0} x^evil(n) - x^odious(n) ), where evil(n) = A001969(n) and odious(n) = A000069(n). - Paul D. Hanna, Jan 23 2012
Let A(x) by the g.f. and B(x) = A(x^k), then 0 = B*((1-A)^k - (-A)^k) + (-A)^k, see fxtbook link. - Joerg Arndt, Dec 17 2012
G.f.: Product_{n>=0} (1+x^(2^n))^(n+1), see the fxtbook link. - Joerg Arndt, Feb 28 2014
G.f.: 1 + Sum_{i>=0} x^(2^i) / Product_{j=0..i} (1 - x^(2^j)). - Ilya Gutkovskiy, May 07 2017
Comments