cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A019276 Megaperfect numbers: numbers n where A019294(n) = min {m: n divides sigma^(m) (n)} increases to a record; sigma^(m) means apply the sum-of-divisors function m times.

Original entry on oeis.org

1, 2, 3, 5, 9, 11, 23, 25, 29, 59, 67, 101, 131, 173, 202, 239, 353, 389, 401, 461, 659, 1319, 1579, 1847, 2309, 2797
Offset: 1

Views

Author

Keywords

Comments

Where records occur in A019294. a(n>=23) depend on a few probable primes.

Crossrefs

Cf. A019277 (the record values), A019294 (min{m: n|sigma^(m)(n)}), A019295 (ratio sigma^(m)(n)/n).

Programs

  • Mathematica
    f[n_, m_] := Block[{d = DivisorSigma[1, n]}, If[Mod[d, m] == 0, 0, d]]; g[n_] := Length[ NestWhileList[ f[ #, n] &, n, # != 0 &]] - 1; a = 0; Do[b = g[n]; If[b > a, a = b; Print[ n]], {n, 460}] (* Robert G. Wilson v, Jun 24 2005 *)
  • PARI
    m=0;for(n=1,oo,m<(m=max(A019294(n),m))&&print1(n",")) \\ M. F. Hasler, Jan 07 2020

A019294 Number (> 0) of iterations of sigma (A000203) required to reach a multiple of n when starting with n.

Original entry on oeis.org

1, 2, 4, 2, 5, 1, 5, 2, 7, 4, 15, 3, 13, 3, 2, 2, 13, 4, 12, 5, 2, 13, 16, 2, 17, 4, 9, 1, 78, 7, 10, 4, 17, 11, 6, 5, 28, 22, 4, 7, 39, 2, 16, 16, 16, 10, 32, 5, 13, 17, 9, 3, 58, 11, 19, 5, 13, 67, 97, 2, 23, 5, 16, 2, 4, 8, 101, 21, 19, 11, 50, 4, 20, 20, 23, 14, 21, 10, 36, 5, 15
Offset: 1

Views

Author

Keywords

Comments

Let sigma^m(n) be result of applying sum-of-divisors function m times to n; sequence gives m(n) = min m such that n divides sigma^m(n).
Perfect numbers require one iteration.
It is conjectured that the sequence is finite for all n.
See also the Cohen-te Riele links under A019276.
a(A111227(n)) > A111227(n). - Reinhard Zumkeller, Aug 02 2012
a(659) > 870. - Michel Marcus, Jan 04 2017

Examples

			If n = 9 the iteration sequence is s(9) = {9, 13, 14, 24, 60, 168, 480, 1512, 4800, 15748, 28672} and Mod[s(9), 9] = {0, 4, 5, 6, 6, 6, 3, 0, 3, 7, 7}. The first iterate which is a multiple of 9 is the 7th = 1512, so a(9) = 7. For n = 67, the 101st iterate is the first, so a(67) = 101. Usually several iterates are divisible by the initial value. E.g., if n = 6, then 91 of the first 100 iterates are divisible by 6.
A difficult term to compute: a(461) = 557. - _Don Reble_, Jun 23 2005
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B41, p. 147.

Crossrefs

Cf. A019295 (ratio sigma^m(n)/n), A019276 (indices of records), A019277 (records), A000396.

Programs

  • Haskell
    a019294 n = snd $ until ((== 0) . (`mod` n) . fst)
                            (\(x, i) -> (a000203 x, i + 1)) (a000203 n, 1)
    -- Reinhard Zumkeller, Aug 02 2012
    
  • Magma
    a:=[]; f:=func; for n in [1..81] do k:=n; s:=1; while f(k) mod n ne 0 do k:=f(k); s:=s+1; end while; Append(~a,s); end for; a; // Marius A. Burtea, Jan 11 2020
  • Maple
    A019294 := proc(n)
        local a,nitr ;
        a := 1 ;
        nitr := numtheory[sigma](n);
        while modp(nitr,n) <> 0 do
            nitr := numtheory[sigma](nitr) ;
            a := a+1 ;
        end do:
        return a;
    end proc: # R. J. Mathar, Aug 22 2016
  • Mathematica
    f[n_, m_] := Block[{d = DivisorSigma[1, n]}, If[ Mod[d, m] == 0, 0, d]]; Table[ Length[ NestWhileList[ f[ #, n] &, n, # != 0 &]] - 1, {n, 84}] (* Robert G. Wilson v, Jun 24 2005 *)
    Table[Length[NestWhileList[DivisorSigma[1,#]&,DivisorSigma[1,n], !Divisible[ #,n]&]],{n,90}] (* Harvey P. Dale, Mar 04 2015 *)
  • PARI
    a(n)=if(n<0,0,c=1; s=n; while(sigma(s)%n>0,s=sigma(s); c++); c)
    
  • PARI
    apply( A019294(n,s=n)=for(k=1,oo,(s=sigma(s))%n||return(k)), [1..99]) \\ M. F. Hasler, Jan 07 2020
    

Formula

Conjecture: lim_{n -> oo} log(Sum_{k=1..n} a(k))/log(n) = C = 1.6... - Benoit Cloitre, Aug 24 2002
From Michel Marcus, Jan 02 2017: (Start)
a(n) = 1 for n in A007691.
a(n) = 2 for n in A019278 unless it belongs to A007691.
a(n) = 3 for n in A019292 unless it belongs to A007691 or A019278. (End)

Extensions

Additional comments from Labos Elemer, Jun 20 2001
Edited by M. F. Hasler, Jan 07 2020

A019277 Records in A019294, number of iterations of the sigma function to reach a multiple of the starting value.

Original entry on oeis.org

1, 2, 4, 5, 7, 15, 16, 17, 78, 97, 101, 120, 174, 214, 239, 261, 263, 296, 380, 557, 1287, 1524, 1722, 1911, 2023, 2373
Offset: 1

Views

Author

Keywords

Comments

Original name: Let sigma_m(n) be the result of applying the sum-of-divisors function m times to n; let m(n) = min m such that n divides sigma_m (n); let k(n) = sigma_{m(n)}(n)/n; sequence gives k(n) for the megaperfect numbers n, where m(n) increases.
Records in A019294. a(n>=23) depend on a few probable primes.
See also the Cohen-te Riele links under A019276.
The original name mentioned the sequence of ratios k, i.e., A019295(A019276) = (1, 2, 5, 24, 168, 1834560, 6516224, 881280, ...), at present not listed in the OEIS. - M. F. Hasler, Jan 07 2020

Crossrefs

Cf. A019276 (megaperfect numbers: where A019294 has records), A019294 (min m: n|sigma^m(n)), A019295 (sigma^m(n)/n with m = A019294).

Programs

  • Mathematica
    f[n_, m_] := Block[{d = DivisorSigma[1, n]}, If[Mod[d, m] == 0, 0, d]]; g[n_] := Length[ NestWhileList[ f[ #, n] &, n, # != 0 &]] - 1; a = 0; Do[b = g[n]; If[b > a, a = b; Print[ a]], {n, 460}] (* Robert G. Wilson v, Jun 24 2005 *)
  • PARI
    {M=0; for(n=1,oo, my(s=n,m=1); while((s=sigma(s))%n,m++); m>M&&print1(M=m,","))} \\ M. F. Hasler, Jan 07 2020

Formula

a(n) = A019294(A019276(n)). - M. F. Hasler, Jan 07 2020

Extensions

Definition corrected by M. F. Hasler, Jan 07 2020

A173430 Last of consecutive coprime iterations of sum-of-divisors function.

Original entry on oeis.org

1, 15, 15, 15, 6, 6, 15, 15, 14, 10, 12, 12, 14, 14, 15, 104, 18, 18, 20, 20, 104, 22, 24, 24, 104, 26, 40, 28, 30, 30, 104, 104, 33, 34, 48, 91, 38, 38, 56, 40, 42, 42, 44, 44, 45, 46, 48, 48, 80, 255, 51, 52, 54, 54, 72, 56, 80, 58, 60, 60, 62, 62, 104, 255, 84, 66, 68, 68
Offset: 1

Views

Author

Walter Nissen, Feb 18 2010

Keywords

Examples

			Calculating sum-of-divisors ( ... sum-of-divisors ( sum-of-divisors ( 4 ) ) ... ) the iterates are 4, 7, 8, 15, 24, ... .
The initial, consecutive, pairwise, coprime iterates are 4, 7, 8, 15, so a(4) = 15 .
Here sigma ( 4 ) = 7, sigma ( sigma ( 4 ) ) = sigma ( 7 ) = 8, etc.
		

References

  • Oystein Ore, Number Theory and Its History, 1988, Dover Publications, ISBN 0486656209, pp. 88-96.

Crossrefs

Cf. A129246 and the references there, A019294, A019295, A000203, A051027, A019284, A019277.

Programs

  • Mathematica
    a[1] = 1; a[n_] := Module[{k = n}, While[CoprimeQ[k, (s = DivisorSigma[1, k])], k = s]; k]; Array[a, 68] (* Amiram Eldar, Sep 02 2019 *)

A173431 Count of consecutive coprime iterations of sum-of-divisors function.

Original entry on oeis.org

1, 6, 5, 4, 2, 1, 3, 2, 3, 1, 2, 1, 2, 1, 1, 5, 2, 1, 2, 1, 4, 1, 2, 1, 5, 1, 2, 1, 2, 1, 4, 3, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 4, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 4, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 4, 3, 1, 5, 2, 1, 2, 1, 1
Offset: 1

Views

Author

Walter Nissen, Feb 18 2010

Keywords

Comments

The last of these iterates is the value in A173430.

Examples

			Calculating sum-of-divisors ( ... sum-of-divisors ( sum-of-divisors ( 7 ) ) ... ) the iterates are 7, 8, 15, 24, ... .
The initial, consecutive, pairwise, coprime iterates are 7, 8, 15, and there are 3 of these, so a(7) = 3.
Here sigma ( 7 ) = 8, sigma ( sigma ( 7 ) ) = sigma ( 8 ) = 15, etc.
		

References

  • Graeme L. Cohen and Herman J. J. te Riele, Iterating the sum-of-divisors function, Experimental Mathematics, 5 (1996), pp. 93-100.
  • Oystein Ore, Number Theory and Its History, 1988, Dover Publications, ISBN 0486656209, pp. 88-96.

Crossrefs

Cf. A173430, A129246 and the references there, A019294, A019295, A000203, A051027, A019284, A019277.

Programs

  • PARI
    a(n)=my(t,s);if(n==1,1,while(1,s++;t=sigma(n);if(gcd(t,n)==1,n=t,return(s)))) \\ Charles R Greathouse IV, Feb 06 2012

A331035 a(n) = sigma^m(N)/N for N = A019276(n) (megaperfect numbers), where m(N) = min {m: N | sigma^m(N)} reaches record values; sigma^m is m-fold iteration of A000203.

Original entry on oeis.org

1, 2, 5, 24, 168, 1834560, 6516224, 881280, 517517500266693633076805172570524811961093324800, 12291248474277267848395134563637563923813851715476607482451722240, 9432427640268436606451425375305719340471711381221905226790680395776
Offset: 1

Views

Author

M. F. Hasler, Jan 08 2020

Keywords

Comments

See A019294 for m as function of the starting value.
See the main sequence A019276 for further information and references.

Crossrefs

Cf. A019276 (megaperfect numbers: where A019294 reaches records), A019277 (the record values), A019294 (min{m>0: n|sigma^m(n)}), A019295 (ratio sigma^m(n)/n).

Formula

a(n) = A019295(A019276(n)).
Showing 1-6 of 6 results.